A New Approach to Improve the Validity of Doubly Labeled Water to Assess CO2 Production during High-Energy Turnover.

Med Sci Sports Exerc

Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the NETHERLANDS.

Published: June 2022

Purpose: Accurate measurement of energy expenditure (EE) using doubly labeled water depends on the estimate of total body water (TBW). The aims of this study were to 1) assess the accuracy of a new approach for estimating TBW and EE during high-energy turnover and 2) assess the accuracy of day-to-day assessment of EE with this new approach.

Methods: EE was measured in six healthy subjects (three male) for 5 consecutive days using three doubly labeled water methods: 1) the plateau, 2) slope-intercept, and 3) overnight-slope method, with whole-room indirect calorimetry as reference method. Urine samples were collected every evening and morning. High EE (physical activity level of >2.5) was achieved by cycling 4 h·d-1.

Results: Physical activity level was 2.8 ± 0.1. TBW values were 41.9 ± 6.1, 38.4 ± 5.7, and 40.4 ± 5.8 L for the plateau, slope-intercept, and overnight-slope methods, respectively. The overnight-slope method showed the highest accuracy in estimated CO2 production, when compared with indirect calorimetry over the complete 5-d period (mean ± SD difference, 0.9% ± 1.6%). The plateau method significantly overestimated CO2 production by 4.7% ± 2.6%, whereas the slope-intercept method underestimated CO2 production (-3.4% ± 2.3%). When CO2 production was assessed per day, the overnight-slope method showed an average difference of 9.4% ± 4.5% to indirect calorimetry.

Conclusions: The overnight-slope method resulted in a more accurate estimation of CO2 production and EE compared with the plateau or slope-intercept method over a 5-d period in high physical activity conditions. Day-to-day determination of EE using the overnight-slope method was more accurate than diet recall and several standard prediction equations in athletes.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000002865DOI Listing

Publication Analysis

Top Keywords

co2 production
24
overnight-slope method
20
doubly labeled
12
labeled water
12
plateau slope-intercept
12
physical activity
12
method
9
high-energy turnover
8
assess accuracy
8
slope-intercept overnight-slope
8

Similar Publications

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Facilitated Channeling of Fixed Carbon and Energy into Chemicals in Artificial Phototrophic Communities.

J Am Chem Soc

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.

Light-driven CO biovalorization offers a promising route for coupling carbon mitigation with petrochemical replacement. Synthetic phototrophic communities that mimic lichens can reduce the metabolic burden with improved CO utilization. However, inefficient channeling of carbon and energy between species seriously hinders the collaborative CO-to-molecule route.

View Article and Find Full Text PDF

How FocA facilitates fermentation and respiration of formate by .

J Bacteriol

January 2025

Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.

Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.

View Article and Find Full Text PDF

Bioenergetic trade-offs can reveal the path to superior microbial CO fixation pathways.

mSystems

January 2025

Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.

A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).

View Article and Find Full Text PDF

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!