Nectar plays important roles in the relationship between plants and other organisms, both within pollination systems and as a defense mechanism. In the latter case, extranuptial nectaries (ENNs) usually attract patrolling arthropods that reduce herbivory. ENNs have been frequently reported within the "xeric clade" of Bromeliaceae, but their occurrence in other groups of bromeliads is largely unexplored, especially considering their position, secretory activity and structure. After observing the presence of ants constantly patrolling the inflorescences of Pitcairnia burchellii Mez, we searched for the presence, secretory activity, and structure of ENNs in this species. We also provide a brief review of the occurrence ENNs in Bromeliaceae. The distribution of nectaries was assessed using ant-exclusion experiments, while structural analysis was performed using standard methods for light and scanning electron microscopy. The presence of sugars in the secretion was assessed by thin-layer chromatography and glucose strip tests. Nectaries in P. burchelli are non-structured glands on the adaxial surface of floral bracts and sepals. Bracts and sepals are distinct spatial units that act over time in the same strategy of floral bud protection. Literature data reveals that ENNs might be more common within Bromeliaceae than previously considered, comprising a homoplastic feature in the family. Future perspectives and evolutionary and taxonomic implications are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00114-022-01799-5 | DOI Listing |
Plants (Basel)
June 2024
Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
Discussing homology relationships among secretory structures remains a relatively underexplored area in botanical research. These structures are widely dispersed within Malpighiales, one of the largest orders of eudicots. Within Malpighiales, both extranuptial and nuptial nectaries are present, and they do not seem homoplastic or share evolutionary connections.
View Article and Find Full Text PDFAoB Plants
February 2023
Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, 18618-689 Botucatu, Brazil.
Nuptial and extranuptial nectaries are involved in interactions with different animal functional groups. Nectar traits involved in pollination mutualisms are well known. However, we know little about those traits involved in other mutualisms, such as ant-plant interactions, especially when both types of nectaries are in the same plant organ, the flower.
View Article and Find Full Text PDFNaturwissenschaften
May 2022
Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
Nectar plays important roles in the relationship between plants and other organisms, both within pollination systems and as a defense mechanism. In the latter case, extranuptial nectaries (ENNs) usually attract patrolling arthropods that reduce herbivory. ENNs have been frequently reported within the "xeric clade" of Bromeliaceae, but their occurrence in other groups of bromeliads is largely unexplored, especially considering their position, secretory activity and structure.
View Article and Find Full Text PDFFront Plant Sci
May 2020
Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
The specialised mutualism between and ants housed in its leaf domatia is a well-known example of myrmecophily. A pollination study on this species revealed that flowers in the bud stage exude a sugary solution that is collected by ants. Given the presence of this unexpected nectar secretion, we investigated how, where, and when floral buds of secret nectar and what function it serves.
View Article and Find Full Text PDFPlant Biol (Stuttg)
September 2020
Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil.
Although the production of extranuptial nectar is a common strategy of indirect defence against herbivores among tropical plants, the presence of extranuptial nectaries in reproductive structures is rare, especially in ant-plants. This is because the presence of ants in reproductive organs can generate conflicts between the partners, as ants can inhibit the activity of pollinators or even castrate their host plants. Here we evaluate the hypothesis that the ant-plant Miconia tococa produces nectar in its petals which attracts ants and affects fruit set.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!