Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, boron and nitrogen-codoped carbon dots (BN-CDs) as highly efficient electrochemiluminescence (ECL) emitters with advantages of low excitation potential and high ECL efficiency were prepared to establish a novel ternary ECL system for ultrasensitive detection of HBV-DNA. Especially, both platinum nanoflowers (Pt NFs) and boron radicals (B) from the BN-CDs could accelerate the reduction of coreactant SO to abundant SO simultaneously, making the BN-CDs have outstanding ECL performance. Impressively, the ECL efficiency of BN-CDs is much higher than that of nondoped CDs and single-doped CDs. In addition, by combining the novel ECL ternary system with the exonuclease III (Exo III)-induced target DNA amplification strategy, an ECL biosensor was constructed to realize the ultrasensitive detection of HBV-DNA from 100 aM to 1 nM, while the limit of detection was 18.08 aM. Therefore, a promising highly efficient ECL emitter was offered to develop a novel ECL detection method for clinical disease analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c00763 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!