Silicon-Containing Complex II Acaricides─Design, Synthesis, and Pharmacological Optimization.

J Agric Food Chem

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China.

Published: September 2022

Bioisosteric replacement has been proven to be a powerful strategy in life science research. In this review, general aspects of carbon-silicon bioisosteric substitution and its applications in pharmaceutical and crop protection research are described. Carbon and their silicon analogues possess similar intrinsic properties. Replacing carbon with silicon in pharmaceuticals and pesticides has shown to result in positive effects on efficacy and selectivity, physicochemical properties, and bioavailability and also to eliminate or improve human or environmental safety properties as well as to provide novelty and new intellectual property in many cases. Furthermore, the application of carbon-silicon substitution in the search for new complex II acaricides is highlighted. This research led to the discovery of sila-cyflumetofen and other silicon-containing analogues of cyflumetofen that match or exceed the acaricidal activity of cyflumetofen. The molecular design strategy, synthetic aspects, biological activity, computational modeling work, and structure-activity relationships will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c00804DOI Listing

Publication Analysis

Top Keywords

carbon silicon
8
silicon-containing complex
4
complex acaricides─design
4
acaricides─design synthesis
4
synthesis pharmacological
4
pharmacological optimization
4
optimization bioisosteric
4
bioisosteric replacement
4
replacement proven
4
proven powerful
4

Similar Publications

Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.

View Article and Find Full Text PDF

One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.

View Article and Find Full Text PDF

The Influence of Rice Husk Ash Incorporation on the Properties of Cement-Based Materials.

Materials (Basel)

January 2025

Green Environmental Protection Industry Co., Ltd., Guiyang 551109, China.

Rice husk ash is a kind of biomass material. Its main component is silicon dioxide, with a content of up to 80%. It has high pozzolanic activity and can react with hydroxide in cement.

View Article and Find Full Text PDF

The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel.

Materials (Basel)

January 2025

Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.

View Article and Find Full Text PDF

Correlative Raman-Voltage Microscopy Revealing the Localized Structure-Stress Relationship in Silicon Solar Cells.

ACS Nano

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.

Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!