A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational analysis of marine algal compounds for obesity management against pancreatic lipase. | LitMetric

Obesity is considered a global crisis because of its increased risk factors triggered by lifestyle changes. The prevalence of this condition is increasing at an alarming rate, giving rise to development of novel drugs. Pancreatic lipase possesses higher efficacy in inhibiting this condition among the other drug targets. In this study, virtual screening of 126 plant-derived anti-obesity compounds and 1110 marine algal compounds from seaweed metabolite database were screened and targeted against pancreatic lipase and ranked based on their binding affinity values. A total of 530 compounds that possessed best docked scores of less than -6 kcal/mol were checked for Lipinski's properties through Swiss ADME. Furthermore, these compounds were subjected to toxicity prediction using PROTOX II server. As much as 38 compounds were found to be non-toxic and were subjected to molecular docking analysis. Based on the binding energy, the following compounds RG012 (-10.15 kcal/mol), LIG42 (-9.7 kcal/mol), BC010 (-8.47 kcal/mol), RL073 (-8.2 kcal/mol), and LIG46 (-8.03 kcal/mol) were selected exhibiting higher binding affinity when compared to the standard drug (Orlistat) and hence these compounds were subjected to molecular dynamics simulation using GROMACS. BC010 complex revealed a stable interaction within the binding pocket and the binding free energy is -158.208 kJ/mol which is higher when compared to other complexes in 100 ns simulation. BC010 ((7S,11S,12S,14R)-4',14-dimethoxyamentol) from brown algae could be considered as a potential drug candidate to suppress obesity by inhibiting pancreatic lipase.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2074139DOI Listing

Publication Analysis

Top Keywords

pancreatic lipase
12
marine algal
8
compounds
8
algal compounds
8
based binding
8
binding affinity
8
compounds subjected
8
subjected molecular
8
binding
5
computational analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!