Nitric oxide-propelled nanomotors for bacterial biofilm elimination and endotoxin removal to treat infected burn wounds.

J Mater Chem B

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.

Published: June 2022

Biofilm infection is regarded as a major contributing factor to the failure of burn treatment and a persistent inflammatory state delays healing and leads to the formation of chronic wounds. Herein, self-propelled nanomotors (NMs) are proposed to enhance biofilm infiltration, bacterial destruction, and endotoxin clearance to accelerate the healing of infected burn wounds. Janus nanoparticles (NPs) were prepared through partially coating FeO NPs with polydopamine (PDA) layers, and then polymyxin B (PMB) and thiolated nitric oxide (SNO) donors were separately grafted onto the Janus NPs to obtain IO@PMB-SNO NMs. In response to elevated glutathione (GSH) levels in biofilms, NO generation from one side of the Janus NPs leads to self-propelled motion and deep infiltration into biofilms. The local release of NO could destroy bacteria inside the biofilm, which provides a non-antibiotic antibiofilm approach without the development of drug resistance. In addition to intrinsic antibacterial effects, the PMB grafts preferentially bind with bacteria and the active motion enhances lipopolysaccharide (LPS) clearance and then significantly attenuates the production of inflammatory cytokines and reactive oxide species by macrophages. Partial-thickness burn wounds were established on mice and infected with , and NM treatment almost fully destroyed the bacteria in the wounds. IO@PMB-SNO NMs absorb LPS and remove it from the wounds under a magnetic field, which downregulates the interleukin-6 and tumor necrosis factor-α levels in tissues. The infected wounds were completely healed with the deposition and arrangement of collagen fibers and the generation of skin features similar to those of normal skin. Thus, IO@PMB-SNO NMs achieved multiple-mode effects, including GSH-triggered NO release and self-propelled motion, the NO-induced non-antibiotic elimination of biofilms and bacteria, and PMB-induced endotoxin removal. This study offers a feasible strategy, with integrated antibiofilm and anti-inflammatory effects, for accelerating the healing of infected burn wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb00555gDOI Listing

Publication Analysis

Top Keywords

burn wounds
16
infected burn
12
io@pmb-sno nms
12
endotoxin removal
8
wounds
8
healing infected
8
janus nps
8
self-propelled motion
8
infected
5
burn
5

Similar Publications

is a widely distributed nosocomial pathogen that causes various acute and chronic infections, particularly in immunocompromised patients. In this study, the activities of the K9-specific virulent phage AM24 and phage-encoded depolymerase DepAPK09 were assessed using in vivo mouse sepsis and burn skin infection models. In the mouse sepsis model, in the case of prevention or early treatment, a single K9-specific phage or recombinant depolymerase injection was able to protect 100% of the mice after parenteral infection with a lethal dose of of the K9-type, with complete eradication of the pathogen.

View Article and Find Full Text PDF

The present experiment aimed to formulate four ointments that included mixtures of plant extracts (, , , and ), apitherapy products (honey, propolis, and apilarnil) and natural polymers (collagen, chitosan, and the lyophilisate of egg white) in an ointment base. : In order to investigate the therapeutic properties of the ointments, experimental in vivo injury models (linear incision, circular excision, and thermal burns) were performed on laboratory animals, namely Wistar rats. The treatment was applied topically, once a day, for 21 days.

View Article and Find Full Text PDF

The autologous reconstruction of the female breast using a microsurgical DIEP flap is a reliable and safe method. To detect impairments early and preserve the microvascular flap through timely revision, a better understanding of physiologic perfusion dynamics is necessary. This exploratory study examines changes in microcirculation in free DIEP flaps within the first 72 h after vascular anastomosis using laser Doppler flowmetry and white-light spectrophotometry.

View Article and Find Full Text PDF

Objectives: Subway-related accidents have risen with advancements in the system. We aim to study the injury patterns from these incidents.

Methods: This is a retrospective study from a single center, covering patients from 1 January 2016 to 31 December 2023.

View Article and Find Full Text PDF

Recent advancements in acute burn wound therapy are transforming the management of burn injuries, with a focus on improving healing times, graft integration, and minimizing complications. However, current clinical treatments face significant challenges, including the difficulty of accurately assessing wound depth and tissue viability, which can lead to suboptimal treatment planning. Traditional closure methods often struggle with issues such as delayed wound closure, limited graft survival, inadequate tissue regeneration, and insufficient vascularization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!