Concurrent and Mechanochemical Activation of Two Distinct and Latent Fluorophores via Retro-Diels-Alder Reaction of an Anthracene-Aminomaleimide Adduct.

ACS Macro Lett

School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China.

Published: March 2022

Generally, a typical mechanochromophore produces color change through chemical transformation into one or two identical new chromophores/fluorophores under applied mechanical force. Herein, we introduce a novel mechanophore based on an anthracene-aminomaleimide Diels-Alder (DA) adduct featuring two distinct and latent fluorophores. This nonfluorescent mechanophore undergoes retro-DA reaction upon mechanochemical activation in solution and the solid state, generating the respective anthracene and aminomaleimide fragments simultaneously, both of which are highly emissive with different fluorescent colors. In addition, the aminomaleimide fluorophore exhibits sensitive fluorescence on-off response to protic solvents or polar solvents, which enables dual-color mechanochromism from this single mechanophore.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.2c00036DOI Listing

Publication Analysis

Top Keywords

mechanochemical activation
8
distinct latent
8
latent fluorophores
8
concurrent mechanochemical
4
activation distinct
4
fluorophores retro-diels-alder
4
retro-diels-alder reaction
4
reaction anthracene-aminomaleimide
4
anthracene-aminomaleimide adduct
4
adduct generally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!