A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption properties of pyramidal superatomic molecules based on the structural framework of the Au cluster. | LitMetric

Adsorption properties of pyramidal superatomic molecules based on the structural framework of the Au cluster.

Phys Chem Chem Phys

Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, 230601, P. R. China.

Published: May 2022

AI Article Synopsis

  • The pyramidal Au cluster is stable but ineffective as a catalyst for CO oxidation, prompting an investigation into CO adsorption on different metal-based pyramidal clusters.
  • By substituting Au vertex atoms with metals like Li, Be, Ni, Cu, and Zn, various superatomic molecules were formed and analyzed for CO interaction using density functional theory.
  • Results show that CO bonding slightly alters cluster geometries, with significant red shifts and stronger bonding observed in clusters containing Ni/Pd/Pt, indicating potential for improved catalytic properties in these modified structures.

Article Abstract

The pyramidal Au cluster is a highly inert and stable superatomic molecule, but it is not suitable as a potential catalyst for covalent bond activations, , CO oxidation reaction. Herein, the adsorption and electronic properties of CO molecules on various pyramidal clusters based on the structural framework of Au are investigated using density functional theory. According to the SVB model, we constructed isoelectronic superatomic molecules with different pyramid configurations by replacing the vertex atoms of the Au using metal M atoms (M = Li, Be, Ni, Cu, and Zn group atoms). After the CO molecules are adsorbed on the vertex atoms of these metal clusters, we analyzed the CO adsorption energies, C-O bond stretching frequencies, and electronic properties of the adsorption structures. It was found that the adsorption of CO molecules results in minimal changes in the parent geometries of the pyramidal clusters, and most adsorption structures are consistent with the geometry of CO adsorption at the vertex site of the Au cluster. There are significant red shifts when CO molecules are adsorbed on the Ni/Pd/Pt atoms of the clusters, and their CO adsorption energies were also greater. The molecular orbitals and density of states reveal that there are overlaps between the frontier orbitals of the clusters and CO, and the electronic structure of NiAu is not sensitive to CO. The ETS-NOCV analysis shows that the increase in the density of the bonding area caused by the orbital interactions between the fragments is higher than the decrease in the density of the bonding area caused by Pauli repulsion, presenting that the direction of charge flow in the deformation density is from CO → clusters. From energy decomposition analysis (EDA) and NPA charge, we find a predominant covalent nature of the contributions in CO⋯M interactions (σ-donation). Our study indicates that the SVB model provides a new direction to expand the superatomic catalysts from the superatom clusters, which also provides inference for the extension of the single atom catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp01552hDOI Listing

Publication Analysis

Top Keywords

adsorption
8
superatomic molecules
8
based structural
8
structural framework
8
electronic properties
8
pyramidal clusters
8
svb model
8
vertex atoms
8
atoms metal
8
molecules adsorbed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!