The entanglement dynamics and viscoelasticity of polyelectrolyte solutions remain active research topics. Previous studies have reported conflicting experimental results when compared to Dobrynin's scaling predictions derived from the Doi-Edwards (DE) tube model for entangled polymers. Herein, by combining classical bulk shear rheometry with diffusing wave spectroscopy (DWS) microrheometry, we investigate how the key viscoelastic parameters (the specific viscosity η, the plateau modulus , and the ratio of the reptation time to the Rouse time of an entanglement strand τ/τ) depend on the polymer concentration for semidilute entangled (SE) solutions containing poly(sodium styrenesulfonate) with high molecular weight. Our experimental measurements yield ∝ , in good agreement with the scaling of ∝ predicted by Dobrynin's model for salt-free polyelectrolyte SE solutions, suggesting that the electrostatic interaction influences the viscoelastic properties of polyelectrolyte SE solutions. On the other hand, the deviation in the scaling exponent for η ∝ and τ/τ ∝ is observed between our DWS experiments and Dobrynin's model prediction (∝ ), likely due to the fact that Dobrynin's scaling model does not account for mechanisms such as the contour length fluctuation, the constraint release, and the retardation of solvent dynamics, which are known to occur for SE solutions of neutral polymers. Our results demonstrate that DWS serves as a powerful rheological tool to study the entanglement dynamics of polyelectrolyte solutions. The scaling relationships obtained in this study provide new insights to the long-standing debate on the entanglement dynamics of polyelectrolyte solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.1c00563 | DOI Listing |
Water Res
January 2025
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37205, USA; Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37205, USA. Electronic address:
Nanofiltration (NF) membranes have the potential to significantly advance resource recovery efforts where monovalent/divalent ion separation is critical, but their utilization is limited by inadequate stability under extreme conditions. "Base separation"-i.e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.
We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.
View Article and Find Full Text PDFSmall
January 2025
Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat, 364002, India.
Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).
View Article and Find Full Text PDFMacromolecules
January 2025
Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States.
This work explored solution properties of linear and star poly(methacrylic acids) with four, six, and eight arms (PMAA, 4PMAA, PMAA, and 8PMAA, respectively) of matched molecular weights in a wide range of pH, salt, and polymer concentrations. Experimental measurements of self-diffusion were performed by fluorescence correlation spectroscopy (FCS), and the results were interpreted using the scaling theory of polyelectrolyte solutions. While all PMAAs were pH sensitive and showed an increase in hydrodynamic radius ( ) with pH in the dilute regime, the of star polymers (measured at basic pH values) was significantly smaller for the star polyacids due to their more compact structure.
View Article and Find Full Text PDFLangmuir
January 2025
School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan.
Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!