Microrheological Approach for Probing the Entanglement Properties of Polyelectrolyte Solutions.

ACS Macro Lett

Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan.

Published: January 2022

The entanglement dynamics and viscoelasticity of polyelectrolyte solutions remain active research topics. Previous studies have reported conflicting experimental results when compared to Dobrynin's scaling predictions derived from the Doi-Edwards (DE) tube model for entangled polymers. Herein, by combining classical bulk shear rheometry with diffusing wave spectroscopy (DWS) microrheometry, we investigate how the key viscoelastic parameters (the specific viscosity η, the plateau modulus , and the ratio of the reptation time to the Rouse time of an entanglement strand τ/τ) depend on the polymer concentration for semidilute entangled (SE) solutions containing poly(sodium styrenesulfonate) with high molecular weight. Our experimental measurements yield ∝ , in good agreement with the scaling of ∝ predicted by Dobrynin's model for salt-free polyelectrolyte SE solutions, suggesting that the electrostatic interaction influences the viscoelastic properties of polyelectrolyte SE solutions. On the other hand, the deviation in the scaling exponent for η ∝ and τ/τ ∝ is observed between our DWS experiments and Dobrynin's model prediction (∝ ), likely due to the fact that Dobrynin's scaling model does not account for mechanisms such as the contour length fluctuation, the constraint release, and the retardation of solvent dynamics, which are known to occur for SE solutions of neutral polymers. Our results demonstrate that DWS serves as a powerful rheological tool to study the entanglement dynamics of polyelectrolyte solutions. The scaling relationships obtained in this study provide new insights to the long-standing debate on the entanglement dynamics of polyelectrolyte solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.1c00563DOI Listing

Publication Analysis

Top Keywords

polyelectrolyte solutions
24
entanglement dynamics
12
properties polyelectrolyte
8
solutions
8
dobrynin's scaling
8
dobrynin's model
8
dynamics polyelectrolyte
8
polyelectrolyte
6
entanglement
5
scaling
5

Similar Publications

Polyelectrolyte nanofiltration membranes for base separation and recovery.

Water Res

January 2025

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37205, USA; Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37205, USA. Electronic address:

Nanofiltration (NF) membranes have the potential to significantly advance resource recovery efforts where monovalent/divalent ion separation is critical, but their utilization is limited by inadequate stability under extreme conditions. "Base separation"-i.e.

View Article and Find Full Text PDF

Microfluidic purification of genomic DNA.

Proc Natl Acad Sci U S A

January 2025

Department of Chemical Engineering, University of Florida, Gainesville, FL 32611.

We describe a microfluidic device to extract DNA from a cell lysate, without the need for centrifuges, magnetic beads, or gels. Instead, separation is driven by transverse migration of DNA, which occurs when a polyelectrolyte solution flowing through a microfluidic channel is subjected to an electric field. The coupling of the weak shearing with the axial electric field is highly selective for long, flexible, charged molecules, of which DNA is the sole example in a typical cell lysate.

View Article and Find Full Text PDF

Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).

View Article and Find Full Text PDF

Self-Diffusion of Star and Linear Polyelectrolytes in Salt-Free and Salt Solutions.

Macromolecules

January 2025

Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States.

This work explored solution properties of linear and star poly(methacrylic acids) with four, six, and eight arms (PMAA, 4PMAA, PMAA, and 8PMAA, respectively) of matched molecular weights in a wide range of pH, salt, and polymer concentrations. Experimental measurements of self-diffusion were performed by fluorescence correlation spectroscopy (FCS), and the results were interpreted using the scaling theory of polyelectrolyte solutions. While all PMAAs were pH sensitive and showed an increase in hydrodynamic radius ( ) with pH in the dilute regime, the of star polymers (measured at basic pH values) was significantly smaller for the star polyacids due to their more compact structure.

View Article and Find Full Text PDF

Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!