While low-dimensional (1D and 2D) polycatechol materials have been widely described for a range of biomedical and surface engineering applications, very few examples have been explored that focus on the construction of functional polycatechol nanoparticles. Herein, we report the facile fabrication of a series of polycatechol nanoparticles via a general and robust strategy based on the one-step oxidation reaction. IO-induced catechol redox chemistry could facilitate the precise size control of the resulting nanoparticles and also allow the successful transfer and amplification of microscopic monomer function into macroscopic polycatechol material properties. The ease, facileness, and controllability of such a one-step fabrication process could highly promote the development of polycatechol nanomaterials for various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.1c00729 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!