Semicrystalline polymers are categorized as either mobile or fixed crystals, depending on chain mobility in the crystalline region. In this work, we investigate molecular dynamics and phase structure in the cocrystal consisting of fixed and mobile polymer crystals by solid-state (ss) nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that (i) the mobile component begins large amplitude motions associated with crystal-crystal transition, while fixed ones keep their rigidity in the cocrystal, and (ii) asymmetric molecular dynamics leads to nanosegregations into mobile- and fixed-rich domains in the cocrystal below the melting temperature (). The observed phase separation induced by asymmetric molecular dynamics is similar to the phase separation of the miscible amorphous polymer blend; however, it is limited to two dimensions due to the parallel packing of the stems inside the cocrystal, as well as chain connectivity at the crystalline-amorphous boundary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.1c00745 | DOI Listing |
Front Biosci (Schol Ed)
December 2024
Laboratory of Intracellular Membranes Dynamics, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia.
Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.
View Article and Find Full Text PDFJACS Au
December 2024
Freie Universität Berlin, Physics Department, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.
Vibrational Stark effect (VSE) spectroscopy has become one of the most important experimental approaches to determine the strength of noncovalent, electrostatic interactions in chemistry and biology and to quantify their influence on structure and reactivity. Nitriles (C≡N) have been widely used as VSE probes, but their application has been complicated by an anomalous hydrogen bond (HB) blueshift which is not encompassed within the VSE framework. We present an empirical model describing the anomalous HB blueshift in terms of H-bonding geometry, i.
View Article and Find Full Text PDFJACS Au
December 2024
Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China.
In this study, we developed a machine-learning-aided protein design strategy for engineering hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis.
View Article and Find Full Text PDFJACS Au
December 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai 200032, China.
Macrocyclization is a compelling strategy for conventional drug design for improving biological activity, target specificity, and metabolic stability, but it was rarely applied to the design of PROTACs possibly due to the mechanism and structural complexity. Herein, we report the rational design of the first series of "Head-to-Tail" macrocyclic PROTACs. The resulting molecule exhibited pronounced Brd4 protein degradation with low nM DC values while almost totally dismissing the "hook effect", which is a general character and common concern of a PROTAC, in multiple cancer cell lines.
View Article and Find Full Text PDFJACS Au
December 2024
Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!