Each heartbeat is initiated by specialized pacemaker cells operating within the sinoatrial node (SAN). While individual cells within SAN tissue exhibit substantial heterogeneity of their electrophysiological parameters and Ca cycling, the role of this heterogeneity for cardiac pacemaker function remains mainly unknown. Here we investigated the problem numerically in a 25 × 25 square grid of connected coupled-clock Maltsev-Lakatta cell models. The tissue models were populated by cells with different degree of heterogeneity of the two key model parameters, maximum L-type Ca current conductance ( ) and sarcoplasmic reticulum Ca pumping rate ( ). Our simulations showed that in the areas of - parametric space at the edge of the system stability, where action potential (AP) firing is absent or dysrhythmic in SAN tissue models populated with identical cells, rhythmic AP firing can be rescued by populating the tissues with heterogeneous cells. This robust SAN function is synergistic with respect to heterogeneity in and and can be further strengthened by clustering of cells with similar properties. The effect of cell heterogeneity is not due to a simple summation of activity of intrinsically firing cells naturally present in heterogeneous SAN; rather AP firing cells locally and critically interact with non-firing/dormant cells. When firing cells prevail, they recruit many dormant cells to fire, strongly enhancing overall SAN function; and vice versa, prevailing dormant cells suppress AP firing in cells with intrinsic automaticity and halt SAN function. The transitions between firing and non-firing states of the system are sharp, resembling phase transitions in statistical physics. Furthermore, robust function of heterogeneous SAN tissue requires weak cell coupling, a known property of the central area of SAN where cardiac impulse emerges; stronger cell coupling reduces AP firing rate and ultimately halts SAN automaticity at the edge of stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091312 | PMC |
http://dx.doi.org/10.3389/fphys.2022.845634 | DOI Listing |
Eur J Pharmacol
December 2024
School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, 248007, India. Electronic address:
The intricate regulatory mechanisms governing TGF-β1 expression play pivotal roles in tumor progression. Key proteins such as FKBP1A, SMAD6, and SMAD7 trigger this process, modulating cell growth inhibition via p15INK4b and p21CIP1 induction. Despite TGF-β's tumor-suppressive functions, cancer cells adeptly evade its effects, fueling disease advancement.
View Article and Find Full Text PDFFront Netw Physiol
December 2024
Department of Physics, University of Alberta, Edmonton, AB, Canada.
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology.
View Article and Find Full Text PDFBiophys J
December 2024
The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China. Electronic address:
In the circulatory system, the microenvironment surrounding cancer cells is complex and involves multiple coupled factors. We selected two core physical factors, shear stress and hydraulic resistance, and constructed a microfluidic device with dual negative inputs to study the trade-off movement behavior of cancer cells when facing coupled factors. We detected significant shear stress escape phenomena in the MDA-MB-231 cell line and qualitatively explained this behavior using a cellular force model.
View Article and Find Full Text PDFChaos
December 2024
The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi'an 710127, China.
Glutamate (Glu) is a crucial excitatory neurotransmitter in the central nervous system that transmits brain information by activating excitatory receptors on neuronal membranes. Physiological studies have demonstrated that abnormal Glu metabolism in astrocytes is closely related to the pathogenesis of epilepsy. The astrocyte metabolism processes mainly involve the Glu uptake through astrocyte EAAT2, the Glu-glutamine (Gln) conversion, and the Glu release.
View Article and Find Full Text PDFElife
December 2024
Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!