To provide reliable input for obstacle avoidance and decision-making, unmanned surface vehicles (USV) need to have the function of sensing the position of other USV targets in the process of cooperation and confrontation. Due to the small size of the target and the interference of the water and sky background, the current algorithms are prone to missed detection and drift problems when detecting and tracking USV. Therefore, in this paper, we propose a fusion algorithm of detection and tracking for USV targets. To solve the problem of vague features in the single-frame image, high-resolution and deep semantic information are obtained through a cross-stage partial network, and the anchor and convolution structure in the network has been improved given the characteristics of USV; besides, to meet the real-time requirements, the detected target is quickly tracked through correlation filtering, and the correlation characteristics of multi-frame images are obtained; then, the correlation characteristics are used to significantly reduce missed detection, and the tracking drift problems are corrected, combined with high-resolution semantic features of a single frame. Finally, the fusion algorithm is designed. In this paper, we constructed a picture dataset and a video dataset to test the effect of detection, tracking, and fusion algorithm separately, which proves the superiority of the fusion algorithm in this paper. The results show that, compared with a single detection algorithm and tracking algorithm, the fusion one can increase the success rate by more than 10%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097020 | PMC |
http://dx.doi.org/10.3389/fnbot.2022.808147 | DOI Listing |
Brief Bioinform
November 2024
Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, No. 16 Daxue Rd, Songshanhu District, Dongguan, Guangdong, 523000, China.
Multimodal omics provide deeper insight into the biological processes and cellular functions, especially transcriptomics and proteomics. Computational methods have been proposed for the integration of single-cell multimodal omics of transcriptomics and proteomics. However, existing methods primarily concentrate on the alignment of different omics, overlooking the unique information inherent in each omics type.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Medical Informatics, Nantong University, Nantong, Jiangsu, China.
Introduction: Diabetic retinopathy (DR) has long been recognized as a common complication of diabetes, making accurate automated grading of its severity essential. Color fundus photographs play a crucial role in the grading of DR. With the advancement of artificial intelligence technologies, numerous researchers have conducted studies on DR grading based on deep features and radiomic features extracted from color fundus photographs.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu road, Shapingba district, Chongqing 400030, China.
Purpose: The aim of this study was to explore and develop a preoperative and noninvasive model for predicting spread through air spaces (STAS) status in lung adenocarcinoma (LUAD) with diameter ≤ 3 cm.
Methods: This multicenter retrospective study included 640 LUAD patients. Center I included 525 patients (368 in the training cohort and 157 in the validation cohort); center II included 115 patients (the test cohort).
BMC Med Imaging
January 2025
Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the efficacy of NAC is essential for the clinical diagnosis and treatment of patients.
View Article and Find Full Text PDFJ Microsc
January 2025
Ningbo Key Laboratory of Micro-Nano Motion and Intelligent Control, Ningbo University, Ningbo, PR China.
The types and quantities of microorganisms in activated sludge are directly related to the stability and efficiency of sewage treatment systems. This paper proposes a sludge microorganism detection method based on microscopic phase contrast image optimisation and deep learning. Firstly, a dataset containing eight types of microorganisms is constructed, and an augmentation strategy based on single and multisamples processing is designed to address the issues of sample deficiency and uneven distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!