Drought is one of the most important abiotic stresses responsible for reduced crop yields. Drought stress induces morphological and physiological changes in plants and severely impacts plant metabolism due to cellular oxidative stress, even in C4 crops, such as sugarcane. Seaweed extract-based biostimulants can mitigate negative plant responses caused by drought stress. However, the effects of foliar application of such biostimulants on sugarcane exposed to drought stress, particularly on plant metabolism, stalk and sugar yields, juice purity, and sugarcane technological quality, have received little attention. Accordingly, this study aimed to evaluate the effects of foliar application of a seaweed extract-based biostimulant on late-harvest sugarcane during the driest period of the year. Three experiments were implemented in commercial sugarcane fields in Brazil in the 2018 (site 1), 2019 (site 2), and 2020 (site 3) harvest seasons. The treatments consisted of the application and no application of seaweed extract (SWE) as a foliar biostimulant in June (sites 2 and 3) or July (site 1). The treatments were applied to the fourth ratoon of sugarcane variety RB855536 at site 1 and the fifth and third ratoons of sugarcane variety SP803290 at sites 2 and 3, respectively. SWE was applied at a dose of 500 ml a.i. ha in a water volume of 100 L ha. SWE mitigated the negative effects of drought stress and increased stalk yield per hectare by up to 3.08 Mg ha. In addition, SWE increased stalk sucrose accumulation, resulting in an increase in sugar yield of 3.4 kg Mg per hectare and higher industrial quality of the raw material. In SWE-treated plants, Trolox-equivalent antioxidant capacity and antioxidant enzyme activity increased, while malondialdehyde (MDA) levels decreased. Leaf analysis showed that SWE application efficiently improved metabolic activity, as evidenced by a decrease in carbohydrate reserve levels in leaves and an increase in total sugars. By positively stabilizing the plant's cellular redox balance, SWE increased biomass production, resulting in an increase in energy generation. Thus, foliar SWE application can alleviate drought stress while enhancing sugarcane development, stalk yield, sugar production, and plant physiological and enzymatic processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096543 | PMC |
http://dx.doi.org/10.3389/fpls.2022.865291 | DOI Listing |
Transgenic Res
January 2025
Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan.
Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, China.
Wheat (Triticum aestivum L.) is one of the most important cereal crops, with its grain serving as a predominant staple food source on a global scale. However, there are many biotic and abiotic stresses challenging the stability of wheat production.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.
The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!