While many aspects of single-particle electron cryo-microscopy (cryo-EM) of biological macromolecules have reached a sophisticated level of development, this is not yet the case when it comes to preparing thin samples on specimen grids. As a result, there currently is considerable interest in achieving better control of both the sample thickness and the amount of area that is useful, but this is only one aspect in which improvement is needed. This Perspective addresses the further need to prevent the macromolecular particles from making contact with the air-water interface, something that can result in preferential orientation and even structural disruption of macromolecular particles. This unwanted contact can occur either as the result of free diffusion of particles during the interval between application, thinning and vitrification of the remaining buffer, or-when particles have been immobilized-by the film of buffer becoming too thin prior to vitrification. An opportunity now exists to apply theoretical and practical insights from the fields of thin-film physical chemistry and interfacial science, in an effort to bring cryo-EM sample preparation to a level of sophistication that is comparable to that of current data collection and analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100935PMC
http://dx.doi.org/10.3389/fmolb.2022.864829DOI Listing

Publication Analysis

Top Keywords

preparing thin
8
macromolecular particles
8
perspective biochemical
4
biochemical physical
4
physical constraints
4
constraints associated
4
associated preparing
4
thin specimens
4
specimens single-particle
4
single-particle cryo-em
4

Similar Publications

Ultralow k covalent organic frameworks enabling high fidelity signal transmission and high temperature electromechanical sensing.

Nat Commun

December 2024

Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.

As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization.

View Article and Find Full Text PDF

Purpose: Using a thin semitendinosus tendon as an autograft is a risk factor for poor clinical outcomes after anterior cruciate ligament reconstruction. Preoperative evaluation of the cross-sectional area of the semitendinosus tendon using magnetic resonance imaging is useful. However, studies comparing the cross-sectional area of the semitendinosus tendon on magnetic resonance imaging and the collagen fibril diameter of the semitendinosus tendon are lacking.

View Article and Find Full Text PDF

Bacteriophages (phages) have a great potential to target specifically foodborne bacterial pathogens, particularly in packaging materials. However, incorporating phages into packaging surfaces requires stabilizing their structure and maintaining their infectivity during the papermaking process. In this study, several coating formulations containing various ratios of carboxymethyl cellulose, cationic starch, and glycerol were applied to a base paper to assess phage stability.

View Article and Find Full Text PDF

Gallium-68-DOTA-D-phe1-try3-octreotide (Ga-DOTATOC) positron emission tomography/computed tomography (PET/CT) is a crucial diagnostic tool for neuroendocrine tumors (NET). Its accuracy is influenced by radiochemical purity and patient preparation. We present two cases where unexpected radiotracer uptake in Ga-DOTATOC PET/CT imaging was observed.

View Article and Find Full Text PDF

A chicken protein hydrogel (HG) was enzymatically prepared and blended with a carnauba wax-based oleogel (OG) to form bigels (BG) in ratios of 50:50 to 90:10. These systems were infused with thyme essential oil (TEO) at 0.5 %, 1 %, and 2 % v/v to harness its antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!