The intrinsic factors that determine the fundamental traits of engraftment ability and multi-lineage potential of hematopoietic stem cells (HSCs) remain elusive. The induction of bona fade HSCs from pluripotent stem cells (PSCs) in dishes is urgently demanded but remains a great challenge in translational medicine. , , , and are developmentally co-expressed during endothelial-to-hematopoietic transition and adult haematopoiesis. However, the expression of these factors fails to be turned on during hematopoietic induction from PSCs. Here, we established an inducible gene over-expression embryonic stem cell (ESC) line in which exogenous , , , and genes were tandemly knocked in. A population of induced hematopoietic progenitor cells (iHPCs) expressing Kit and Sca1 surface markers were successfully obtained from the gene edited-ESC line. Upon transplantation of the ESC-derived iHPCs into irradiated immunodeficient mice, they can dominantly contribute to B cells, low proportions of T cells and myeloid cells. However, -- ESC-derived iHPCs only produced B lineage cells with extremely low contributions. Our study unveils that the coordination of , , , and led to generation of the hematopoietic progenitors with the capacity of multi-lineage hematopoietic reconstitution in the immunodeficient recipient mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096103 | PMC |
http://dx.doi.org/10.3389/fcell.2022.859769 | DOI Listing |
Eur J Haematol
January 2025
Hematology, St. Paul's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada.
Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a second-line treatment with curative potential for leukemia patients. However, the prognosis of allo-HSCT patients with disease relapse or graft-versus-host disease (GvHD) is poor. CD4 or CD8 conventional T (Tconv) cells are critically involved in mediating anti-leukemic immune responses to prevent relapse and detrimental GvHD.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!