The trabecular meshwork (TM) is the tissue responsible for regulating aqueous humor fluid egress from the anterior eye. If drainage is impaired, intraocular pressure (IOP) becomes elevated, which is a primary risk factor for primary open angle glaucoma. TM cells sense elevated IOP via changes in their biomechanical environment. Filopodia cellular protrusions and integrin transmembrane proteins may play roles in detecting IOP elevation, yet this has not been studied in detail in the TM. Here, we investigate integrins and filopodial proteins, such as myosin-X (Myo10), in response to mechanical stretch, an technique that produces mechanical alterations mimicking elevated IOP. Pull-down assays showed Myo10 binding to α5 but not the β1 subunit, αvβ3, and αvβ5 integrins. Several of these integrins colocalized in nascent adhesions in the filopodial tip and shaft. Using conformation-specific antibodies, we found that β1 integrin, but not α5 or αvβ3 integrins, were activated following 1-h mechanical stretch. Cadherin -11 (CDH11), a cell adhesion molecule, did not bind to Myo10, but was associated with filopodia. Interestingly, CDH11 was downregulated on the TM cell surface following 1-h mechanical stretch. In glaucoma cells, CDH11 protein levels were increased. Finally, mechanical stretch caused a small, yet significant increase in Myo10 protein levels in glaucoma cells, but did not affect cellular communication of fluorescent vesicles via filopodia-like tunneling nanotubes. Together, these data suggest that TM cell adhesion proteins, β1 integrin and CDH11, have relatively rapid responses to mechanical stretch, which suggests a central role in sensing changes in IOP elevation .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100841 | PMC |
http://dx.doi.org/10.3389/fcell.2022.886706 | DOI Listing |
Polymers (Basel)
January 2025
School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan.
Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.
Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Zhejiang Sunny Optical Company, Yuyao 315400, China.
Dielectric elastomer actuators (DEAs) are difficult to apply to flexible grippers due to their small deformation range and low output force. Hence, a DEA with a large bending deformation range and output force was designed, and a corresponding flexible gripper was developed to realize the function of grasping objects of different shapes. The relationship between the pre-stretch ratio and DEA deformation degree was tested by experiments.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
Biological materials, such as bamboo, are naturally optimized composites with exceptional mechanical properties. Inspired by such natural composites, traditional methods involve extracting nanofibers from natural sources and applying them in composite materials, which, however, often results in less ideal mechanical properties. To address this, this study develops a bottom-up nanofiber assembly strategy to create strong fiber-reinforced composite hydrogels inspired by the hierarchical assembly of bamboo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!