Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this article, COVID-19 detection and classification framework based on anopheles search optimized AlexNet convolutional deep neural network for random forest classifier is implemented. Here, the COVID-19 dataset is taken from Joseph Paul Cohen database. Then, the input images are preprocessed with the help of fuzzy gray level difference histogram equalization technique (FGLHE) and fuzzy stacking technique for color enhancement and noise elimination in the input images. The FGLHE technique and fuzzy stacking technique are combined together and forms into stacked dataset image. This stacked dataset are trained with AlexNet convolutional deep neural network model and the feature packages acquired via the models are processed by the anopheles search algorithm. Subsequently, the efficient features are combined and delivered to random forest (RF) classifier. The proposed approach is implemented in MATLAB. The proposed ADCNN-ASA-RFC provides 91.66%, 69.13%, 34.86%, and 70.13% higher accuracy, 79.13%, 60.33%, and 63.34% higher specificity and 77.13%, 58.45%, 25.86%, and 55.33%, higher sensitivity compared with existing algorithms. At last, the simulation outcomes demonstrate that the proposed system can be able to find the optimal solutions efficiently and accurately with COVID-19 diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9087014 | PMC |
http://dx.doi.org/10.1002/cpe.6958 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!