A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent Advances on DNAzyme-Based Biosensors for Detection of Uranyl. | LitMetric

Recent Advances on DNAzyme-Based Biosensors for Detection of Uranyl.

Front Chem

Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China.

Published: April 2022

AI Article Synopsis

  • * There is a high demand for biosensors that can specifically and sensitively detect uranium, with DNAzymes being a promising option for sensor development due to their effectiveness in recognizing target molecules.
  • * This review covers various DNAzyme-based biosensors for measuring uranyl ions, discussing their detection methods, applications, challenges, and future directions in the field.

Article Abstract

Nuclear facilities are widely used in fields such as national defense, industry, scientific research, and medicine, which play a huge role in military and civilian use. However, in the process of widespread application of nuclear technology, uranium and its compounds with high carcinogenic and biologically toxic cause a lot of environmental problems, such as pollutions of water, atmosphere, soil, or ecosystem. Bioensors with sensitivity and specificity for the detection of uranium are highly demand. Nucleic acid enzymes (DNAzyme) with merits of high sensitivity and selectivity for targets as excellent molecular recognition elements are commonly used for uranium sensor development. In this perspective review, we summarize DNAzyme-based biosensors for the quantitative detection of uranyl ions by integrating with diverse signal outputting strategies, such as fluorescent, colorimetry, surface-enhanced Raman scattering, and electrochemistry. Different design methods, limit of detection, and practical applications are fully discussed. Finally, the challenges, potential solutions, and future prospects of such DNAzyme-based sensors are also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9091443PMC
http://dx.doi.org/10.3389/fchem.2022.882250DOI Listing

Publication Analysis

Top Keywords

dnazyme-based biosensors
8
detection uranyl
8
advances dnazyme-based
4
detection
4
biosensors detection
4
uranyl nuclear
4
nuclear facilities
4
facilities fields
4
fields national
4
national defense
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!