Heterometallic Metal-Organic Framework Based on [CuI] and [HfO] Clusters for Adsorption of Iodine.

Front Chem

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.

Published: April 2022

Heterometallic metal-organic framework (MOF) as a kind of porous material is very important because of its excellent properties in catalysis, magnetic, sensor, and adsorption fields, but the reasonable design and syntheses of these are still challenging. Herein, we prepared one heterometallic MOF with the formula [Hf( -OH)(OH)][(CuI) (ina)]·22DMF (, ina = isonicotinate). Single-crystal X-ray diffraction analysis revealed that is a three-dimensional network with topology, constructed from 8-connected [Hf( -OH)(OH)] and 4-connected [CuI] clusters as second building units (SBUs). To our best knowledge, is a rare example with two different metal clusters as SBUs in heterometallic Hf-based MOFs. Interestingly, exhibits a reversible adsorption performance for iodine in the cyclohexane solution, the adsorption kinetics fits well with the pseudo-second-order equation, and the Freundlich model relating to multilayer adsorption better describes the process of iodine absorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098963PMC
http://dx.doi.org/10.3389/fchem.2022.864131DOI Listing

Publication Analysis

Top Keywords

heterometallic metal-organic
8
metal-organic framework
8
adsorption
5
heterometallic
4
framework based
4
based [cui]
4
[cui] [hfo]
4
[hfo] clusters
4
clusters adsorption
4
adsorption iodine
4

Similar Publications

The soft nature of Metal-Organic Frameworks (MOFs) sets them apart from other non-synthetic porous materials. Their flexibility allows the framework components to rearrange in response to environmental changes, leading to different states and properties. The work extends this concept to titanium frameworks, demonstrating control over charge transport in porous molecular crystals.

View Article and Find Full Text PDF

CO-templated [LnNi] heterometallic compounds for enhanced magnetocaloric effects at low fields.

Dalton Trans

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.

View Article and Find Full Text PDF

A novel antimonotungstate (AT)-based heterometallic framework {[Er(HO)][Fe(Hpdc)(B-β-SbWO)]}·50HO (, Hpdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-Fe-substituted Krebs-type [Fe(Hpdc)(B-β-SbWO)] subunit and two [Er(HO)] cations. This subunit can be regarded as a product of carboxylic oxygen atoms of Hpdc ligands replacing active water ligands in the [Fe(HO)(B-β-SbWO)] species.

View Article and Find Full Text PDF

In-Situ Growth of Metallocluster Inside Heterometal-Organic Cage to Switch Electron Transfer for Targeted CO Photoreduction.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China.

Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metallocluster-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metallocluster-based heterometallic MOC (CuVMOP) constructed of [CuOPz] and [VO(OCH)(SO)(CO)] clusters was obtained by one-pot method.

View Article and Find Full Text PDF

There has long been a pursuit for a metal-organic framework (MOF)-based adsorbent for various hydrocarbon separations. Herein, we utilized simple trimesic acid and 1,2,4-triazole, together with the heterometallic strategy to produce two quaternary MOFs with a kgm-type structure. The cooperative coordination allows the immobilization of metal clusters into the pore channels, creating an appropriate pore size and high density of open metal sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!