Oxygen Plasma Modified Carbon Cloth with C=O Zincophilic Sites as a Stable Host for Zinc Metal Anodes.

Front Chem

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Published: April 2022

Aqueous zinc-ion batteries (ZIBs) are currently receiving widespread attention due to their merits of environmental-friendly properties, high safety, and low cost. However, the absence of stable zinc metal anodes severely restricts their potential applications. In this work, we demonstrate a simple oxygen plasma treatment method to modify the surface state of carbon cloth to construct an ideal substrate for zinc deposition to solve the dendrite growth problem of zinc anodes. The plasma treated carbon cloth (PTCC) electrode has lower nucleation overpotential and uniformly distributed C=O zincophilic nucleation sites, facilitating the uniform nucleation and subsequent homogeneous deposition of zinc. Benefiting from the superior properties of PTCC substrate, the enhanced zinc anodes demonstrate low voltage hysteresis (about 25 mV) and stable zinc plating/stripping behaviors (over 530 h lifespan) at 0.5 mA cm with 15% depth of discharge (DOD). Besides, an extended cycling lifespan of 480 h can also be achieved at very high DOD of 60%. The potential application of the enhanced zinc anode is also confirmed in Zn|VO·12HO full cell. The cells with Zn@PTCC electrode demonstrate remarkable rate capability and excellent cycling stability (95.0% capacity retention after 500 cycles).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9096248PMC
http://dx.doi.org/10.3389/fchem.2022.899810DOI Listing

Publication Analysis

Top Keywords

carbon cloth
12
oxygen plasma
8
c=o zincophilic
8
zinc
8
zinc metal
8
metal anodes
8
stable zinc
8
zinc anodes
8
enhanced zinc
8
plasma modified
4

Similar Publications

Alzheimer's disease (AD) significantly impacts the well-being of older people around the world. However, the accurate detection of glycosylated amyloid-beta (Aβ) proteins, which serve as important biomarkers for AD, remains challenging due to their extremely low levels. To address these issues, we proposed a method for fabricating a flexible and stable sensor platform based on an innovative boronic acid-based covalent organic framework COF-B(OH).

View Article and Find Full Text PDF

Electrocatalyst materials play a crucial role in determining the efficiency of the hydrogen evolution reaction (HER), directly influencing the overall effectiveness of energy conversion technologies. NiS/MoS heterostructures hold substantial promise as bifunctional catalysts, owing to their synergistic electronic characteristics and plentiful active sites. However, their catalytic efficacy is impeded by the relatively elevated chemisorption energy of hydrogen-containing intermediates, which constrains their functionality in different pH environments.

View Article and Find Full Text PDF

The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS) on carbon cloth (NC-CoNiS@ReS/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

MXene 2D materials and non-noble transition metal oxide nanoparticles have been proposed as novel pH-universal platforms for oxygen evolution reaction (OER), owing to the enhancement of active site exposures and conductivity. Herein, Co3O4-RuO2 /Ti3C2Tx/carbon cloths (CRMC) were assembled in a facile way as an efficient OER platform through a hydrothermal process. The Co3O4-RuO2/Ti3C2Tx demonstrated prominent OER catalytic performance under acidic and alkaline conditions, which showed overpotential values of 195 and 247 mV at 10 mA cm-2 with Tafel slopes of 93 and 97 mVdec-1, respectively.

View Article and Find Full Text PDF

Recently, biomass-derived carbon dots (CDs) have attracted considerable attention in high-technology fields due to their prominent merits, including brilliant luminescence, superior biocompatibility, and low toxicity. However, most of the biomass-derived CDs only show bright fluorescence in diluted solution because of aggregation-induced quenching effect, hence cannot exhibit solid-state long-lived room-temperature phosphorescence (RTP) in ambient conditions. Herein, matrix-free solid-state RTP with an average lifetime of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!