Developing nonenzymatic chemistry that is nontoxic to microbial organisms creates the potential to integrate synthetic chemistry with metabolism and offers new remediation strategies. Chlorinated organic compounds known to bioaccumulate and cause harmful environmental impact can be converted into less damaging derivatives through hydrodehalogenation. The hydrodechlorination of substituted aryl chlorides using Pd/C and ammonium formate in biological media under physiological conditions (neutral pH, moderate temperature, and ambient pressure) is reported. The reaction conditions were successful for a range of aryl chlorides with electron-donating and -withdrawing groups, limited by the solubility of substrates in aqueous media. Soluble substrates gave good yields (60-98%) of the reduction product within 48 h. The relative toxicities of each reaction component were tested separately and together against bacteria, and the reaction proceeded in bacterial cultures containing an aryl chloride with robust cell growth. This work offers an initial step toward the removal of aryl chlorides from waste streams that currently use bacterial degradation to remove pollutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097202 | PMC |
http://dx.doi.org/10.1021/acsomega.2c01204 | DOI Listing |
Org Lett
January 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States.
Although alkyl alcohols and aryl chlorides are the two most abundant substrate pools for cross-electrophile coupling, methods to couple them remain limited. Herein we demonstrate a simple procedure for the in situ deoxychlorination of alcohols followed by XEC with aryl chlorides. A broad substrate scope can be achieved by tuning the rate of the reaction via halide exchange.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
The C2- or C3-selective direct C-H arylation of nonsubstituted 1-pyrrole with aryl chlorides/nonaflates was achieved using catalysts derived from palladium and appropriate phosphine ligands. The site selectivity of the arylation can be switched by changing the ligands, and the C3-selective arylation of nonsubstituted 1-pyrrole was realized for the first time. BuOLi played an important role in suppressing N-arylation and accelerating C2- or C3-arylation.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Química Inorgánica, Universidad de Sevilla, 41012 Sevilla, Spain.
Preformed Ni(0) complexes are rarely used as precatalysts in cross-coupling reactions, although they can incorporate catalytically active nickel directly into the reaction. In this work, we focus on the preparation and the catalytic application of low-coordinate Ni(0) complexes supported by bulky monophosphine ligands in C-S cross-coupling reactions. We have prepared two families of Ni(0) complexes, bis-phosphine aducts of the type [Ni(PRAr')] (Ar' = -terphenyl group) and monophosphine derivatives of the type [Ni(PRAr')(DVDS)] (DVDS = divinyltetramethyldisiloxane).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!