Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The detection of brain tumors using magnetic resonance imaging is currently one of the biggest challenges in artificial intelligence and medical engineering. It is important to identify these brain tumors as early as possible, as they can grow to death. Brain tumors can be classified as benign or malignant. Creating an intelligent medical diagnosis system for the diagnosis of brain tumors from MRI imaging is an integral part of medical engineering as it helps doctors detect brain tumors early and oversee treatment throughout recovery. In this study, a comprehensive approach to diagnosing benign and malignant brain tumors is proposed. The proposed method consists of four parts: image enhancement to reduce noise and unify image size, contrast, and brightness, image segmentation based on morphological operators, feature extraction operations including size reduction and selection of features based on the fractal model, and eventually, feature improvement according to segmentation and selection of optimal class with a fuzzy deep convolutional neural network. The BraTS data set is used as magnetic resonance imaging data in experimental results. A series of evaluation criteria is also compared with previous methods, where the accuracy of the proposed method is 98.68%, which has significant results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106477 | PMC |
http://dx.doi.org/10.1155/2022/7543429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!