For advanced oral squamous cell carcinoma (OSCC), increasing sensitivity to chemotherapy is a major challenge in improving treatment outcomes, and targeting cytoprotective processes that lead to the chemotherapy resistance of cancer cells may be therapeutically promising. Tumor-suppressive microRNAs (miRNAs) can target multiple cancer-promoting genes concurrently and are thus expected to be useful seeds for cancer therapeutics. We revealed that -mediated targeting of multiple cytoprotective process-related genes, including cellular inhibitor of apoptosis protein 1 (), can effectively increase cisplatin (CDDP)-induced cytotoxicity and overcome CDDP resistance in OSCC cells. The combination of topical treatment with ointment and administration of CDDP was synergistically effective against OSCC tumor growth in a xenograft mouse model. Furthermore, the expression of target genes is frequently upregulated in primary OSCC tumors. Our study suggests that reversing -mediated cytoprotective processes activated in cancer cells is a potentially useful strategy to improve CDDP efficacy against advanced OSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073396 | PMC |
http://dx.doi.org/10.1016/j.omto.2022.02.002 | DOI Listing |
Mol Omics
January 2025
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
The present work aimed to examine the primary mechanisms of liver damage, namely the impact of gut-derived endotoxins along the gut-liver axis and adipose-derived free fatty acids along the adipose-liver axis. These processes are known to play a significant role in the development of hepatic inflammation and steatosis. Although possible overlapping in the pathogenesis was expected, these processes have unique pathophysiological consequences.
View Article and Find Full Text PDFNanotoxicology
December 2024
Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland.
Fullerenes (C, C) as carbon nanomaterials can enter the environment through natural processes and anthropogenic activities, while synthetic fullerenes are commonly used in medicine in targeted therapies in association with antibodies, or anticancer and antimicrobial drugs. As the nanoparticles, they can pass through cell membranes and organelles and accumulate in the entire cytoplasm. The red-fluorescent, water-soluble [70]fullerene derivative C-OMe-ser, which produces reactive oxygen species upon illumination with an appropriate wavelength, passed into the cytoplasm of the middle region in the digestive system.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Research Centre for Medical Genetics, 115522 Moscow, Russia.
Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).
View Article and Find Full Text PDFiScience
December 2024
Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine.
5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects.
View Article and Find Full Text PDFBiophys Chem
December 2024
International Scientific and Practical Center of Tissue Proliferation, st. Prechistenka, 14/19, Moscow 119034, Russia.
Bilirubin, a yellow bile pigment, plays an important role in the body, being a potent antioxidant and having anti-inflammatory, immunomodulatory, cytoprotective, and neuroprotective functions. This makes bilirubin promising as a therapeutic and diagnostic agent in biomedicine. However, excess bilirubin is toxic and should be removed from the body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!