Circadian Rhythm Sleep Disorders: Genetics, Mechanisms, and Adverse Effects on Health.

Front Genet

Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.

Published: April 2022

Nearly all living organisms, from cyanobacteria to humans, have an internal circadian oscillation with a periodicity of approximately 24 h. In mammals, circadian rhythms regulate diverse physiological processes including the body temperature, energy metabolism, immunity, hormone secretion, and daily sleep-wake cycle. Sleep is tightly regulated by circadian rhythms, whereas a misalignment between the circadian rhythms and external environment may lead to circadian rhythm sleep disorders (CRSD). CRSD includes four main kinds of disorders: the advanced sleep-wake phase disorder (ASPD), the delayed sleep-wake phase disorder (DSPD), the irregular sleep-wake rhythm disorder and the non-24-h sleep-wake rhythm disorder. Recent studies have begun to shed light on the genetic basis of CRSD. Deciphering the genetic codes for ASPD and DSPD has so far been more successful than the other CRSDs, which allow for the development of animal models and understanding of the pathological mechanisms for these disorders. And studies from humans or animal models implicate CRSDs are associated with adverse health consequences, such as cancer and mental disorders. In this review, we will summarize the recent advances in the genetics, underlying mechanisms and the adverse effects on health of ASPD and DSPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099045PMC
http://dx.doi.org/10.3389/fgene.2022.875342DOI Listing

Publication Analysis

Top Keywords

circadian rhythms
12
circadian rhythm
8
rhythm sleep
8
sleep disorders
8
mechanisms adverse
8
adverse effects
8
effects health
8
sleep-wake phase
8
phase disorder
8
sleep-wake rhythm
8

Similar Publications

Drought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.

View Article and Find Full Text PDF

Prokineticin 2 protein is diurnally expressed in PER2 containing clock neurons in the mouse suprachiasmatic nucleus.

Peptides

January 2025

Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also knowns as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.

View Article and Find Full Text PDF

Hypo-osmotic stress shifts transcription of circadian genes.

Biophys J

January 2025

Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:

Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.

View Article and Find Full Text PDF

Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs.

View Article and Find Full Text PDF

Circadian biology of cardiac aging.

J Mol Cell Cardiol

December 2024

Kinesiology & Health, University of Wyoming, Laramie, WY, USA; Zoology & Physiology, University of Wyoming, Laramie, WY, USA. Electronic address:

The age of the U.S. population is increasing alongside a growing burden of age-related cardiovascular disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!