Selective ring-opening allene metathesis polymerization (ROAlMP) and ruthenium vinylidene formation from 1,2-cyclononadiene () by simple catalyst selection are discussed. Grubbs second-generation catalyst (G2) favors the formation of an alkylidene leading to the ROAlMP of (). Grubbs first-generation catalyst (G1) favors vinylidene formation and prevents the homopolymerization of () even at elevated temperatures. Isolation and characterization of poly() by NMR analysis and MALDI-TOF confirms the generation of a well-defined polyallene that exhibits good thermal stability ( ca. 390 °C) and fluorescent properties. Ring-opening metathesis polymerization (ROMP) of a highly strained norbornene derivative (NBE-Pr) at 80 °C using the ruthenium vinylidene generated from () is also investigated. The discovery of ROAlMP allows for the simple access of well-defined polyallenes from commercially available catalysts and will ultimately guide structure-property determinations of polyallenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.1c00229 | DOI Listing |
ACS Appl Bio Mater
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
The rapid emergence of multidrug-resistant (MDR) bacteria represents a critical global health threat, underscoring the urgent need for alternative antimicrobial strategies beyond conventional antibiotics. In this study, we report the synthesis of novel biobased antimicrobial polymers bearing quaternary ammonium salts, derived from sustainable feedstocks, maleic anhydride, dimethylaminobenzaldehyde, and furfurylamine. The functional tricyclic oxanorbornene lactam monomer is polymerized via ring opening metathesis polymerization, yielding well-defined polymers with controlled molar masses and low dispersity.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Graft-through ring-opening metathesis polymerization (ROMP) of norbornene-terminated macromonomers (MMs) prepared using various polymerization methods has been extensively used for the synthesis of bottlebrush (co)polymers, yet the potential of ROMP for the synthesis of MMs that can subsequently be polymerized by graft-through ROMP to produce new bottlebrush compositions remains untapped. Here, we report an efficient "ROMP-of-ROMP" method that involves the synthesis of norbornene-terminated poly(norbornene imide) (PNI)-based MMs that, following ROMP, provide new families of bottlebrush (co)polymers and "brush-on-brush" hierarchical architectures. In the bulk state, the organization of the PNI pendants drives bottlebrush backbone extension to enable rapid assembly of asymmetric lamellar morphologies with large asymmetry factors.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.
The demand for insulating materials with superior dielectric properties has increased. Among these materials, polymers containing cyclic structure including cyclic olefin copolymer (COC) and cyclic olefin polymer (COP) stand out because of their excellent dielectric properties originating from the pure hydrocarbon structure. Introducing fluorine into polymers is one efficient strategy for optimizing the dielectric and the related important properties.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
Ring expansion metathesis polymerization (REMP) has emerged as a potent strategy for obtaining cyclic polymers over the past two decades. The scope of monomers, however, remains limited due to the poor functional group tolerance and stability of the catalyst, necessitating a rational catalyst design to address this constraint. Here, we present ruthenium complexes featuring tethered cyclic (alkyl)(amino)carbene ligands for REMP, aiming to deepen our understanding of the structure-property relationship in newly designed catalysts.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!