Background: Electrical impedance tomography (EIT) can be used for continuous monitoring of pulmonary ventilation. However, no proper method has been developed for the separation of pulmonary ventilation and perfusion signals and the measurement of the associated ventilation/ perfusion (V/Q) ratio. Previously, various methods have been used to extract these components; however, these have not been able to effectively separate and validate cardiac- and pulmonary- related images.

Aims: This study aims at validating and developing a novel method to separate cardiac- and pulmonary- related components based on the EIT simulation field of view and to simultaneously reconstruct the individual images instantly.

Methods: Our approach combines the advantages of the principal component analysis (PCA) and processes that originally measure EIT data instead of handling a series of EIT images, thus introducing the empirical mode decomposition (EMD). The PCA template functions for cardiacrelated imaging and intrinsic mode functions (IMFs) of EMD for lung-related imaging are then adapted to input signals.

Results: The proposed method enables the separation of cardiac- and lung-related components by adjusting the proportion of the key components related to lung imaging, which are the fourth component (PC4) and the first component (IMF1) in PCA- and EMD-based methods, respectively. The preliminary results on the application of the method to real human EIT data revealed the consistently better performance and optimal computation compared with previous methods.

Conclusion: This study proposes a novel method for applying EIT to evaluate the best time of V/Q matching on the cardiovascular and respiratory systems; this aspect can be investigated in future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903293PMC
http://dx.doi.org/10.2174/1573405618666220513130834DOI Listing

Publication Analysis

Top Keywords

electrical impedance
8
impedance tomography
8
empirical mode
8
mode decomposition
8
pulmonary ventilation
8
cardiac- pulmonary-
8
novel method
8
eit data
8
eit
6
method
5

Similar Publications

A multi-channel bioimpedance-based device for Vietnamese hand gesture recognition.

Sci Rep

December 2024

Department of Biomedical Engineering, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, 700000, Vietnam.

This study addresses the growing importance of hand gesture recognition across diverse fields, such as industry, education, and healthcare, targeting the often-neglected needs of the deaf and dumb community. The primary objective is to improve communication between individuals, thereby enhancing the overall quality of life, particularly in the context of advanced healthcare. This paper presents a novel approach for real-time hand gesture recognition using bio-impedance techniques.

View Article and Find Full Text PDF

The present investigation provides an easy and affordable strategy for fabrication of functional ceramics BiNaTiO-SrFeO (BNT-SrF5) thick films on a flexible, inexpensive and electrically integrated substrate using electrophoretic deposition process (EPD). EPD is a widely accepted, environmentally friendly method for applying coatings from a colloidal suspension to conductive substrates. Lead-free ferroelectric BNT-SrF5 powder was synthesized by solid state method to fabricate bulk samples and thick films (30-160 μm) by EPD process.

View Article and Find Full Text PDF

This study presents the design of a high-gain 16 × 16-slot antenna array with a low sidelobe level (SLL) using a tapered ridge gap waveguide feeding network for Ka-band applications. The proposed antenna element includes four cavity-backed slot antennas. A tapered feeding network is designed and utilized for unequal feeding of the radiating elements.

View Article and Find Full Text PDF

A ridge-loaded staggered double-vane slow-wave structure is proposed for terahertz radiation sources employing a sheet electron beam. This slow-wave structure has the advantages of enhanced electric field and energy density distribution and improved interaction impedance in the beam-wave interaction region. High-frequency characteristics are investigated for the proposed slow wave structure and compared with those of the staggered double-vane slow wave structure.

View Article and Find Full Text PDF

Advanced control strategy for AC microgrids: a hybrid ANN-based adaptive PI controller with droop control and virtual impedance technique.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, an improved voltage control strategy for microgrids (MG) is proposed, using an artificial neural network (ANN)-based adaptive proportional-integral (PI) controller combined with droop control and virtual impedance techniques (VIT). The control strategy is developed to improve voltage control, power sharing and total harmonic distortion (THD) reduction in the MG systems with renewable and distributed generation (DG) sources. The VIT is used to decouple active and reactive power, reduce negative power interactions between DG's and improve the robustness of the system under varying load and generation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!