In order to develop methods to determine the chemical composition of Waste Printed Circuit Boards (WPCB), this study focused on the analysis of 10 metals (Cu, Fe, Sn, Zn, Pb, Ni, Sb, Cr, Mo and Pd) using portable X-ray fluorescence (pXRF) compared to ICP-MS measurements after aqua regia digestion. Different experimental conditions were tested: 3 particle sizes (200 µm, 750 µm and 2 mm) and 3 sample preparations (tube, cup and loose powder). For each condition tested, 8-16 independent replicates were done. ICP measurements with the 200 µm sample, considered as the reference condition in this study, confirmed the homogeneity of the sample at this particle size and the robustness of the sampling protocol (RSD < 5% for all elements). For this particle size, pXRF has low data dispersion too (Cu, Fe, Sn, Zn, Pb, Sb and Cr showed RSD < 10%) and the use of loose powder seems to be a sufficient preparatory step. Moreover, the deviation of pXRF measurements with the 200 µm sample from the reference condition was acceptable (<20%) for Cu, Sn, Zn, Pb, Ni, Sb and Mo. For coarser samples, i.e. 750 µm and 2 mm, the homogeneity was much more doubtful, which needs to be offset by a larger number of repetitions. For these particles sizes, pXRF set to factory-installed mining mode did not produce accurate measurements but could provide a rapid non-intrusive approach for first-level screening to assess the relative difference of metal contents between WPCB samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2022.05.001 | DOI Listing |
Heliyon
January 2025
Department of Chemical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
The widespread adoption of electronic devices has enhanced living standards but has also led to a surge in electronic waste (e-waste), creating serious environmental and health challenges. Although various methods exist to recover valuable metals from e-waste, each has notable drawbacks. Among these, chemical leaching with aqua regia is widely used but is both highly corrosive and hazardous.
View Article and Find Full Text PDFIEEE Biomed Circuits Syst Conf
October 2024
Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 USA.
The proper functioning of the respiratory system is evaluated by monitoring the exchange of blood oxygen and carbon dioxide. While wearable devices for monitoring both blood oxygen and carbon dioxide are emerging, wearable carbon dioxide monitors remain relatively rare. This paper introduces a novel wearable prototype that integrates the measurement of transcutaneous carbon dioxide and peripheral blood oxygen saturation on a miniaturized custom-designed printed circuit board.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China.
A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiO-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Mechanical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Wireless, passive, and flexible strain sensors can transform structural health monitoring across various applications by eliminating the need for wired connections and active power sources. Such sensors offer the dual benefits of operational simplicity and high-function adaptability. Herein, a novel wireless sensor is fabricated using radio frequency (RF) technology for passive, wireless measurement of mechanical strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!