A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnnp1ejqi54eom85i52td70a994qu0d9d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. | LitMetric

AI Article Synopsis

  • Diabetic Retinopathy (DR) is a serious eye condition for diabetic patients, and early detection can prevent blindness, with AI systems showing superior performance over human diagnosis.
  • Traditional deep learning methods use cross-entropy loss, which has limitations leading to inaccuracies, prompting the introduction of supervised contrastive learning (SCL) for improved diagnosis and severity assessment of DR from fundus images.
  • The study reports a two-stage SCL method using the APTOS 2019 dataset, achieving high accuracy (98.36%) and AUC score (98.50%) in identifying DR, and outperforms conventional CNN models in detecting and grading the condition.

Article Abstract

Diabetic Retinopathy (DR) is a major complication in human eyes among the diabetic patients. Early detection of the DR can save many patients from permanent blindness. Various artificial intelligent based systems have been proposed and they outperform human analysis in accurate detection of the DR. In most of the traditional deep learning models, the cross-entropy is used as a common loss function in a single stage end-to-end training method. However, it has been recently identified that this loss function has some limitations such as poor margin leading to false results, sensitive to noisy data and hyperparameter variations. To overcome these issues, supervised contrastive learning (SCL) has been introduced. In this study, SCL method, a two-stage training method with supervised contrastive loss function was proposed for the first time to the best of authors' knowledge to identify the DR and its severity stages from fundus images (FIs) using "APTOS 2019 Blindness Detection" dataset. "Messidor-2" dataset was also used to conduct experiments for further validating the model's performance. Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied for enhancing the image quality and the pre-trained Xception CNN model was deployed as the encoder with transfer learning. To interpret the SCL of the model, t-SNE method was used to visualize the embedding space (unit hyper sphere) composed of 128 D space into a 2 D space. The proposed model achieved a test accuracy of 98.36%, and AUC score of 98.50% to identify the DR (Binary classification) and a test accuracy of 84.364%, and AUC score of 93.819% for five stages grading with the APTOS 2019 dataset. Other evaluation metrics (precision, recall, F1-score) were also determined with APTOS 2019 as well as with Messidor-2 for analyzing the performance of the proposed model. It was also concluded that the proposed method achieved better performance in detecting the DR compared to the conventional CNN without SCL and other state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.105602DOI Listing

Publication Analysis

Top Keywords

supervised contrastive
12
loss function
12
contrastive learning
8
diabetic retinopathy
8
fundus images
8
training method
8
proposed model
8
test accuracy
8
auc score
8
aptos 2019
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!