Discovery of novel chloropyramine-cinnamic acid hybrids as potential FAK inhibitors for intervention of metastatic triple-negative breast cancer.

Bioorg Med Chem

Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, PR China. Electronic address:

Published: July 2022

To search for novel focal adhesion kinase (FAK) inhibitors for intervention of metastatic triple-negative breast cancer (TNBC), a series of hybrids 7a-s from chloropyramine and cinnamic acid analogs were designed, synthesized and biologically evaluated. The most active compound 7d could potently inhibit the proliferation, invasion and migration of TNBC cells in vitro. The docking analysis of 7d was performed to elucidate its possible binding modes to focal adhesion targeting (FAT) domain of FAK scaffold. Further mechanism studies indicated the ability of 7d in disrupting Y925 autophosphorylation of FAK, reducing formation of focal adhesions (FAs) and stress fibers (SFs) as well as inducing apoptosis of TNBC cells. Together, 7d is a novel FAK inhibitor to inhibit the essential nonkinase scaffolding function of FAK via binding FAT domain and may be worth studying further for intervention of TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2022.116809DOI Listing

Publication Analysis

Top Keywords

fak inhibitors
8
inhibitors intervention
8
intervention metastatic
8
metastatic triple-negative
8
triple-negative breast
8
breast cancer
8
focal adhesion
8
tnbc cells
8
fat domain
8
fak
6

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.

View Article and Find Full Text PDF

Objectives: Interleukin-8 (IL-8), a proinflammatory factor in human tissues, plays an important role in inflammation. Type IV collagen, a key component of the basement membrane, interacts with integrins, which are primary receptors in the extracellular matrix (ECM). Integrins are essential for the regulation of various cellular behaviors and signal transduction pathways.

View Article and Find Full Text PDF

Rhamnogalacturonan promotes intestinal mucosal repair through increased cell migration.

Am J Physiol Gastrointest Liver Physiol

January 2025

Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.

Mucosal healing is the primary goal for Inflammatory Bowel Diseases (IBD) treatment. We previously showed the direct beneficial effects of rhamnogalacturonan (RGal) on intestinal epithelial barrier function. Here, we aimed to evaluate the effect of RGal in intestinal epithelial wound healing.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!