A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photothermal-responsive fiber dressing with enhanced antibacterial activity and cell manipulation towards promoting wound-healing. | LitMetric

Photothermal-responsive fiber dressing with enhanced antibacterial activity and cell manipulation towards promoting wound-healing.

J Colloid Interface Sci

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China. Electronic address:

Published: October 2022

For chronic persistent skin injuries, functional wound dressings with improved antibacterial action and cell control are extremely appealing. In this study, we design and fabricate a composite fiber dressing with near-infrared (NIR) laser-induced hyperthermia and transformable topographies that can protect the wound from bacterial infection while also encouraging cell recruitment and tissue regeneration. Polycaprolactone/gelatin (PCL/Gel) with melting point close to photothermal temperature were electrospun as the supporting matrix. The zeolitic imidazolate framework-8 (ZIF-8)-derived nanocarbon was synthesized as NIR laser-triggered nanoagent and then electrospun within oriented PCL/Gel fibers to enable the inorganic/polymer composite fiber dressing with photo-to-thermal conversion effect and drug loading capability. The composite fiber dressing exhibits excellent photothermal performance and stage-specific transformable topographies (photothermal-triggered melting behavior of oriented PCL/Gel fibers) after multiple laser irradiations, which can generate local massive heat and abundant drug release for synergistic sterilization, as well as direct cell migration and adhesion/spreading to promote tissue regeneration. Furthermore, in vivo testing demonstrates that the photothermal-responsive fiber dressing accelerates wound closure process by synergistically improving antibacterial and cell manipulation. Overall, this composite fiber dressing offers a promising integrated wound healing strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.05.013DOI Listing

Publication Analysis

Top Keywords

fiber dressing
24
composite fiber
16
photothermal-responsive fiber
8
cell manipulation
8
transformable topographies
8
tissue regeneration
8
oriented pcl/gel
8
pcl/gel fibers
8
dressing
6
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!