The synthesis of four new azo-Schiff base ligands from 2-hydroxy-3-methoxy-5-(phenyldiazenyl)benzaldehyde and 4-aminoantipyrine is described in this study. The molecular structures of all the scaffolds were confirmed using NMR spectroscopies such as H and C, as well as FT-IR and Mass spectroscopy. After successful synthesis and characterization of all the ligands, their in vitro antibacterial, antioxidant and anti-inflammatory activities were carried out by using standard protocols. Results revealed that all the four ligands (L1-L4) possessed excellent biological potency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2976DOI Listing

Publication Analysis

Top Keywords

antibacterial antioxidant
8
antioxidant anti-inflammatory
8
novel schiff
4
schiff base
4
base scaffolds
4
scaffolds derived
4
derived 4-aminoantipyrine
4
4-aminoantipyrine 2-hydroxy-3-methoxy-5-phenyldiazenylbenzaldehyde
4
2-hydroxy-3-methoxy-5-phenyldiazenylbenzaldehyde synthesis
4
synthesis antibacterial
4

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Fine particulate matter (PM2.5) is known to exacerbate chronic respiratory disorders, primarily by inducing inflammatory responses and mucus overproduction. Perilla leaves are reported to have significant health benefits, such as antioxidant, antibacterial, and antiallergic properties, attributed to phenolic compounds that vary depending on genetic diversity.

View Article and Find Full Text PDF

In this study, we conducted a thorough analysis of (RT) and (COF) extracts with varying polarities using LC-MS chemical profiling and biological tests (antioxidant, antimicrobial, enzyme inhibition, and cytotoxic effects). The highest level of total phenolic content in the ethanol extract of RT with 75.82 mg GAE/g, followed by the infusions of RT (65.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!