Development of a maxillofacial virtual surgical system based on biomechanical parameters of facial soft tissue.

Int J Comput Assist Radiol Surg

Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Published: July 2022

Purpose: Lack of biomechanical force model of soft tissue hinders the development of virtual surgical simulation in maxillofacial surgery. In this study, a physical model of facial soft tissue based on real biomechanical parameters was constructed, and a haptics-enabled virtual surgical system was developed to simulate incision-making process on facial soft tissue and to help maxillofacial surgery training.

Methods: CT data of a 25-year-old female patient were imported into Mimics software to reconstruct 3D models of maxillofacial soft and skeletal tissues. 3dMD stereo-photo of the patient was fused on facial surface to include texture information. Insertion and cutting parameters of facial soft tissue measured on fresh cadavers were integrated, and a maxillofacial biomechanical force model was established. Rapid deformation and force feedback were realized through localized deformation algorithm and axis aligned bounding box (AABB)-based collision detection. The virtual model was validated quantitatively and qualitatively.

Results: A patient-specific physical model composed of skeletal and facial soft tissue was constructed and embedded in the virtual surgical system. Insertion and cutting in different regions of facial soft tissue were simulated using omega 6, and real-time feedback force was recorded. The feedback force was consistent with acquired force data of experiments conducted on tissue specimen. Real-time graphic and haptic feedback were realized. The mean score of the system performance was 3.71 given by surgeons in evaluation questionnaires.

Conclusion: The maxillofacial physical model enabled operators to simulate insertion and cutting on facial soft tissue with realization of realistic deformation and haptic feedback. The combination of localized deformation algorithm and AABB-based collision detection improved computational efficiency. The proposed virtual surgical system demonstrated excellent performance in simulation and training of incision-making process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206636PMC
http://dx.doi.org/10.1007/s11548-022-02657-5DOI Listing

Publication Analysis

Top Keywords

soft tissue
32
facial soft
28
virtual surgical
20
surgical system
16
physical model
12
insertion cutting
12
soft
9
tissue
9
biomechanical parameters
8
facial
8

Similar Publications

: Community-acquired methicillin-resistant (CA-MRSA) greatly complicates the treatment of skin and soft tissue infections (SSTI). It was previously found that subcutaneous (SQ) treatment with the mononuclear phagocyte (MP)-selective activator complements peptide-derived immunostimulant-02 (CPDI-02; formerly EP67) and increases prophylaxis of outbred CD-1 mice against SQ infection with CA-MRSA. Here, we determined if treatment with CPDI-02 also increases curative protection.

View Article and Find Full Text PDF

Synthesis and Characterization of Photocurable Difunctional Monomers for Medical Applications.

Polymers (Basel)

December 2024

Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland.

Photocurable materials offer a rapid transition from a liquid to a solid state, and have recently received great interest in the medical field. However, while dental resins are very popular, only a few materials have been developed for soft tissue repair. This study aims to synthesize a difunctional methacrylate monomer using a dibutyltin dilaurate which is suitable for the photocuring of soft materials.

View Article and Find Full Text PDF

Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).

View Article and Find Full Text PDF

The Mechanisms of Cadmium Toxicity in Living Organisms.

Toxics

November 2024

UPIZ Educational and Research Laboratory of Biology-MF-NBU, New Bulgarian University, 1618 Sofia, Bulgaria.

Cadmium (Cd) is a toxic metal primarily found as a by-product of zinc production. Cd was a proven carcinogen, and exposure to this metal has been linked to various adverse health effects, which were first reported in the mid-19th century and thoroughly investigated by the 20th century. The toxicokinetics and dynamics of Cd reveal its propensity for long biological retention and predominant storage in soft tissues.

View Article and Find Full Text PDF

Discordant β-Lactam Susceptibility in Clinical Isolates: A Molecular and Phenotypical Exploration to Detect the BORSA/MODSA Isolates in Bogotá, Colombia.

Microorganisms

December 2024

Grupo de Investigación Celular y Molecular de Microorganismos Patógenos, Department of Biological Scieces, Universidad de los Andes, Bogotá 111711, Colombia.

is a human pathogen responsible for a wide range of diseases, such as skin and soft tissue infections, pneumonia, toxic shock syndrome, and urinary tract infections. Methicillin-resistant (MRSA) is a well-known pathogen with consistently high mortality rates. Detecting the resistance gene and phenotypical profile to β-lactams allows for the differentiation of MRSA from methicillin-susceptible (MSSA) isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!