Tumor necrosis factor-related apoptosis-inducing ligand is a potential therapeutic anti-cancer drug with selective cytotoxicity in cancer cells. However, in multiple clinical trials, the therapeutic effect of TRAIL is limited owing to tumor resistance. The combination of small molecules or other drugs may represent a suitable strategy to overcome TRAIL resistance. This study found that 20(s)-ginsenoside Rh2 sensitized non-sensitive human hepatocellular carcinoma cells to TRAIL-induced apoptosis. The combination of TRAIL and Rh2 decreased cell viability and increased caspase cascade-induced apoptosis in several liver cancer cell lines. Moreover, we found that Rh2 reduced the apoptosis-related protein XIAP and Survivin, a negative regulator of the apoptosis pathway. At the same time, Rh2 can further enhance TRAIL-induced apoptosis by upregulating the death receptor 5, thereby significantly enhancing its anti-tumor effect. Furthermore, Rh2 enhanced the therapeutic efficacy of TRAIL in mouse xenograft models, suggesting that Rh2 also sensitizes TRAIL in vivo. Taken together, our study indicates that Rh2 may act as a sensitizer in combination with TRAIL to increase the efficacy of its anti-tumor activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12032-022-01663-6 | DOI Listing |
J Cell Biochem
January 2025
Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
We previously reported that ferroptosis interplays with apoptosis through the integration of two independent pathways: the endoplasmic reticulum (ER) stress signaling pathway and the mitochondria-dependent apoptotic signaling pathway. In this study, we investigated a potential gatekeeper molecule, Mcl-1, between the two signal transduction pathways. Morphology studies and cell death analyses confirmed that a combination treatment of ferroptotic agent erastin (ERA) and apoptotic agent TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) synergistically enhances TRAIL-induced apoptosis in human pancreatic adenocarcinoma BxPC3 and human colorectal carcinoma HCT116 cells.
View Article and Find Full Text PDFOncogene
January 2025
MRC Toxicology Unit, University of Leicester, Leicester, UK.
Exp Cell Res
December 2024
Hypoxia and Health Medicine Research Center, Jilin Medical University, Jilin, 132013, Jilin Province, PR China. Electronic address:
Tissue Barriers
December 2024
Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo, Japan.
Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial homeostasis. LSR is highly expressed in well-differentiated cancers, and its expression decreases during malignancy. The LSR antibody inhibits cell growth and promotes apoptosis in some cancers.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
January 2025
Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea.
Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!