Interactions amongst marine microalgae and heterotrophic bacteria drive processes underlying major biogeochemical cycles and are important for many artificial systems. These dynamic and complex interactions span the range from cooperative to competitive, and it is the diverse and intricate networks of metabolites and chemical mediators that are predicted to principally dictate the nature of the relationship at any point in time. Recent advances in technologies to identify, analyze, and quantify metabolites have allowed for a comprehensive view of the molecules available for exchange and/or reflective of organismal interactions, setting the stage for development of mechanistic understanding of these systems. Here, we (i) review the current knowledge landscape of microalgal-bacterial interactions by focusing on metabolomic studies of selected, simplified model systems; (ii) describe the state of the field of metabolomics, with specific focus on techniques and approaches developed for microalga-bacterial interaction studies; and (iii) outline the main approaches for development of mathematical models of these interacting systems, which collectively have the power to enhance interpretation of experimental data and generate novel testable hypotheses. We share the viewpoint that a comprehensive and integrated series of -omics approaches that include theoretical formulations are necessary to develop predictive and mechanistic understanding of these biological entities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsre/fuac020 | DOI Listing |
Sci Rep
December 2024
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
Antibody-mediated protection against pathogens is crucial to a healthy life. However, the recent SARS-CoV-2 pandemic has shown that pre-existing comorbid conditions including kidney disease account for compromised humoral immunity to infections. Individuals with kidney disease are not only susceptible to infections but also exhibit poor vaccine-induced antibody response.
View Article and Find Full Text PDFNat Commun
December 2024
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
The strain-release-driven reactions of bicyclo[1.1.0]butanes (BCBs) have received significant attention from chemists.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!