Close association of polarization and LC3, a marker of autophagy, in axon determination in mouse hippocampal neurons.

Exp Neurol

Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. Electronic address:

Published: August 2022

AI Article Synopsis

  • The autophagy-lysosome pathway is crucial for cellular cleanup and maintenance, affecting various cell functions and health, with disruptions linked to numerous diseases.
  • In developing neurons, particularly in axons, autophagy occurs mainly at growth cones and is essential for axonal regeneration after injury; however, its role in axon-dendrite differentiation is not well understood.
  • Research using cultured mouse hippocampal neurons showed that spikes in autophagic marker LC3 are associated with neuron differentiation into axons, with manipulation of autophagy affecting the timing of this process.

Article Abstract

The autophagy-lysosome pathway is a cellular clearance system for intracellular organelles, macromolecules and microorganisms. It is indispensable for cells not only to maintain their homeostasis but also to achieve more active cellular processes such as differentiation. Therefore, impairment or disruption of the autophagy-lysosome pathway leads to a wide spectrum of human diseases, ranging from several types of neurodegenerative diseases to malignancies. In elongating axons, autophagy preferentially occurs at growth cones, and disruption of autophagy is closely associated with incapacity for axonal regeneration after injury in the central nervous system. However, the roles of autophagy in developing neurons remain elusive. In particular, whether autophagy is involved in axon-dendrite determination is largely unclear. Using primary cultured mouse embryonic hippocampal neurons, we here showed the polarized distribution of autophagosomes among minor processes of neurons at stage 2. Time-lapse observation of neurons from GFP-LC3 transgenic mice demonstrated that an "LC3 surge"-i.e., a rapid accumulation of autophagic marker LC3 that continues for several hours in one minor process-proceeded the differentiation of neurons into axons. In addition, pharmacological activation and inhibition of autophagy by trehalose and bafilomycin, respectively, accelerated and delayed axonal determination. Taken together, our findings revealed the close association between LC3, a marker of autophagy, and axon determination in developing neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2022.114112DOI Listing

Publication Analysis

Top Keywords

close association
8
lc3 marker
8
marker autophagy
8
autophagy axon
8
axon determination
8
hippocampal neurons
8
autophagy-lysosome pathway
8
developing neurons
8
autophagy
7
neurons
7

Similar Publications

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.

View Article and Find Full Text PDF

The ubiquitin (Ub) ligase E6AP, which is encoded by the UBE3A gene, has been associated with several human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited. The formation of a thioester complex between Ub and the catalytic Cys residue of E6AP represents an essential intermediate step in E6AP-mediated ubiquitination.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!