Cotton leaf curl disease (CLCuD) ranks top among all endemic diseases transmitted by whitefly (Bemisia tabaci) affecting cotton (Gossypium hirsutum) causing severe economic losses to the cotton growers in the Indian subcontinent. For its effective management, robust tools for detection are a prerequisite and it is important to diagnose the virus titre in early stage of infection in plants as well as in the disease transmitting vector. Considering the limitations in current PCR-based techniques we have standardised rapid and sensitive Loop Mediated Isothermal Amplification (LAMP) protocol for the diagnosis of cotton leaf curl virus (CLCuV) in cotton leaves and in its transmitting vector whitefly. Perhaps, this is the first report of use of LAMP tool for rapid diagnosis of CLCuV in cotton and its transmitting vector the whitefly. Further, the colorimetric detection for diagnostic simplicity of amplified LAMP product by using different dyes lead to enhanced applicability of this technique in the field of disease diagnostics. The merit of present study is that the diagnostic failure of PCR and LAMP due to low virus titre in the infected leaf has been circumvented through the combination of rolling circle amplification (RCA) with LAMP. Thus RCA-LAMP can be an option for ultra-sensitive detection of samples with low virus titre. The potential applications of this advanced diagnostic tool in laboratory research on diagnosis of CLCuV, an important viral pathogen of cotton have been discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2022.114541DOI Listing

Publication Analysis

Top Keywords

cotton leaf
12
leaf curl
12
virus titre
12
transmitting vector
12
loop mediated
8
mediated isothermal
8
isothermal amplification
8
amplification lamp
8
lamp tool
8
tool rapid
8

Similar Publications

Brown cotton and white cotton are two important raw materials used in the cotton fiber industry. Clarifying the differences in morphology, agronomic traits, and fiber pigments between these varieties can facilitate the implementation of corresponding cultivation and breeding techniques. Therefore, we obtained F generation brown cotton plants through hybridization and compared them with their parents.

View Article and Find Full Text PDF

GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum.

Plant Sci

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:

Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that GhWRKY207 expression was high in leaves and induced by drought stress.

View Article and Find Full Text PDF

Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.

View Article and Find Full Text PDF

The begomoviral V2 protein is known to be multifunctional, including its interaction with and inhibition of CYP1, a papain-like cysteine protease (PLCP). However, the effect of this interaction on viral pathogenicity remains unclear. Cotton leaf curl Multan virus (CLCuMuV), a typical monopartite begomovirus associated with a betasatellite, is one of the main pathogens responsible for cotton leaf curl disease.

View Article and Find Full Text PDF

Cotton leaf curl disease (CLCuD) is a major constraint for production of cotton (Gossypium sp.) in Northwest India. CLCuD is caused by a monopartite, circular ssDNA virus belonging to the genus Begomovirus in association with betasatellites and alphasatellites, and ttransmitted by a whitefly vector (Bemisia tabaci).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!