The link between hyperuricemia (HUA) and the risk of venous thromboembolism (VTE) has been well established. However, the mechanisms of thrombus generation and the effect of HUA on procoagulant activity (PCA) of erythrocytes remain unclear no matter in uremia or hyperuricemia. Here, phosphatidylserine (PS) exposure, microparticles (MPs) release, cytosolic Ca, TMEM16F expression, reactive oxygen species (ROS) and lipid peroxidation of erythrocyte were detected by flow cytometer. PCA was assessed by coagulation time, purified coagulation complex and fibrin production assays. The fibrin formation was observed by scanning electron microscopy (SEM). We found that PS exposure, MPs generation, TMEM16F expression and consequent PCA of erythrocyte in HUA patients significantly increased compared to those in healthy volunteers. Furthermore, high UA induced PS exposure, and MPs release of erythrocyte in concentration and time-dependent manners in vitro, which enhanced the PCA of erythrocyte and was inhibited by lactadherin, a PS inhibitor. Additionally, using SEM, we also observed compact fibrin clots with highly-branched networks and thin fibers supported by red blood cells (RBCs) and RBC-derived MPs (RMPs). Importantly, we demonstrated UA enhanced the production of ROS and lipid peroxidation and reduced the generation of glutathione (GSH) of erythrocyte, which enhanced TMEM16F activity and followed PS externalization and RMPs formation. Collectively, these results suggest that Ca-dependent TMEM16F activation may be responsible for UA-induced PS exposure and MPs release of RBC, which thereby contribute to the prothrombotic risk in HUA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcmd.2022.102666DOI Listing

Publication Analysis

Top Keywords

mps release
12
exposure mps
12
phosphatidylserine exposure
8
release erythrocyte
8
tmem16f expression
8
ros lipid
8
lipid peroxidation
8
pca erythrocyte
8
erythrocyte
6
tmem16f
5

Similar Publications

Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) are ubiquitous contaminants in environments, yet their co-occurrence and interactions remain insufficiently understood. In this study, we confirmed the concurrent presence of MPs and PFASs and their distinct distribution patterns in a wastewater treatment plant (WWTP) through a comprehensive sampling and analysis effort. Significant correlations ( < 0.

View Article and Find Full Text PDF

Mechanisms of microplastic generation from polymer-coated controlled-release fertilizers (PC-CRFs).

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA; Missouri Water Center, University of Missouri, Columbia, USA. Electronic address:

Polymer-coated controlled-release fertilizers (PC-CRFs) are valued for nutrient efficiency, but concerns remain about the long-term impacts of their plastic coatings on soil health. This study investigates the physicochemical characteristics of two commercially available PC-CRFs, type A and B, and their changes during nutrient release. Accelerated nutrient release experiments were conducted for 25 d in ultrapure water (free water) and saturated soil with five wet-dry cycles.

View Article and Find Full Text PDF

This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55 to 6.

View Article and Find Full Text PDF

The underestimated environmental risk of tris (2-chloroethyl) phosphate photodegradation in aqueous environment induced by polystyrene microplastics.

Water Res

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:

Tris(2-choroethyl) phosphate (TCEP) is commonly utilized as a flame retardant and plasticizer, which inevitably coexists with polystyrene microplastics (PS-MPs) in aquatic environments. In this work, the promoting effect of pristine and aged PS-MPs on the photodegradation of TCEP was observed, and the reaction mechanisms and environmental risks of PS-MPs enhancing TCEP photodegradation were clearly revealed. The aged PS-MPs presenting more significant enhancement was attributed to more generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Release of microplastics from polymeric ultrafiltration membrane system for drinking water treatment under different operating conditions.

Water Res

December 2024

Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

Drinking water has emerged as an important route for microplastics (MPs) to enter the human body, prompting concerns about their adverse health impacts. Membrane filtration technology is widely recognized as an effective treatment solution for combating MP pollution in water. However, recent research disputes that polymeric membrane systems may serve as additional sources of MPs in drinking water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!