Purpose: Folate-mediated one-carbon metabolism (FOCM) plays a vital role in supporting cancer cells hyperproliferation. Malignant cells, including nasopharyngeal carcinoma (NPC) cells, are characterized by rapid proliferation and thus need large numbers of nucleotides and nutrients generated from FOCM. However, the mechanism and key genes involved in FOCM playing a vital role in NPC progression are still unclear. This study aimed to find out the key gene, and its functions in NPC and explore the potential mechanism.

Methods: Bioinformatics analysis based on TCGA and GSEA database were performed to screen the key FOCM related gene in HNSCC. The effects of MTHFD2 on cell proliferation, apoptosis and migration were conducted through MTHFD2 knockdown cell lines in vitro experiments. Cell proliferation was explored by CCK8 assay and colony formation assay. Cell apoptosis was tested through flow cytometry. Transwell migration assay was performed to study the cell migration. The potential pathway was explored by RNA-seq and the ERK inhibitor SCH772984 and the ERK activator tBHQ were applied to verify the effect of MTHFD2 in NPC via the ERK pathway. Finally, xenograft tumor model was used to explore the tumorigenicity of NPC cells in vivo and IHC was performed to study the expression of related proteins.

Results: MTHFD2 was highly expressed in NPC and associated with a poor prognosis. MTHFD2 knockdown inhibited the proliferation, migration and induced apoptosis of NPC cells in vitro. In consistent with cellular results, knockdown of MTHFD2 suppressed the tumorigenicity of NPC cells in vivo. MAPK pathway was enriched among DEGs between MTHFD2 knockdown cells and control cells. And the level of p-ERK1/2 and p-p38 MAPK was decreased in MTHFD2 knockdown cells and xenograft tumors of MTHFD2 knockdown cells. Furthermore, the application of the selective ERK inhibitor SCH772984 and the ERK activator tBHQ confirmed that MTHFD2-knockdown inhibited the proliferation and migration of NPC cells via the ERK signaling pathway.

Conclusion: MTHFD2 was up-regulated in NPC tissues and its high expression was linked to a poor prognosis. Knockdown of MTHFD2 inhibited proliferation and migration of NPC cells through the ERK signaling pathway, which may provide new clues and targets for the treatment of NPC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.05.007DOI Listing

Publication Analysis

Top Keywords

npc cells
24
mthfd2 knockdown
20
proliferation migration
16
cells
13
knockdown mthfd2
12
cells erk
12
erk signaling
12
npc
12
inhibited proliferation
12
knockdown cells
12

Similar Publications

circTP63-N suppresses the proliferation and metastasis of nasopharyngeal carcinoma via engaging with HSP90AB1 to modulate the YAP1/Hippo signaling pathway.

Sci China Life Sci

December 2024

NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.

Circular RNAs (circRNAs) play pivotal roles in the development and progression of various diseases, including malignant tumors. However, the biological functions and the underlying mechanisms of many circRNAs remain elusive. In this study, we identified a novel circRNA, circTP63-N, generated through the splicing of exons 2-4 of the TP63 gene in nasopharyngeal carcinoma (NPC).

View Article and Find Full Text PDF

The multi-target mechanism of action of Selaginella doederleinii Hieron in the treatment of nasopharyngeal carcinoma: a network pharmacology and multi-omics analysis.

Sci Rep

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Nasopharyngeal carcinoma (NPC) presents significant treatment challenges due to its complex etiology and late-stage diagnosis. The traditional Chinese medicine Selaginella doederleinii Hieron (S. doederleinii) has shown potentiality in NPC treatment due to its multi-target, multi-pathway anti-cancer mechanisms.

View Article and Find Full Text PDF

Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers.

View Article and Find Full Text PDF

CREG1 attenuates intervertebral disc degeneration by alleviating nucleus pulposus cell pyroptosis via the PINK1/Parkin-related mitophagy pathway.

Int Immunopharmacol

January 2025

Department of Orthopaedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China. Electronic address:

Intervertebral disc degeneration (IVDD) is a chronic degenerative disease with a complex pathophysiological mechanism. Increasing evidence suggests that the NOD-like receptor thermal protein domain associated protein 3 (NLRP3)-mediated pyroptosis of nucleus pulposus cells (NPCs) plays a crucial role in the pathological progression of IVDD. Pyroptosis is a novel form of programmed cell death characterized by the formation of plasma membrane pores by gasdermin family proteins, leading to cell swelling, membrane rupture, and the release of inflammatory cytokines, which trigger an inflammatory response.

View Article and Find Full Text PDF

Neural precursor cells (NPCs) are a group of cells with self-renewal and multi-differentiation potential. MicroRNAs are required for neurogenesis in the central nervous system (CNS). Recent reports suggest that miR-1224 is important in human CNS diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!