Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes mellitus has been a major public health problem worldwide, characterized by insulin resistance and dysfunction of β-cells. A previous study showed that Kindlin-2 loss in β-cells dramatically reduces insulin secretion and decreases β-cell mass, resulting in severe diabetes-like phenotypes. It suggests that Kindlin-2 in β-cells play an important role in regulating glucose homeostasis. However, the effect of Kindlin-2 on the function of β-cells under chronic hyperglycemia in diabetes has not been explored. Here we report that Kindlin-2 overexpression ameliorates diabetes and improves insulin secretion in mice induced by streptozocin. In contrast, Kindlin-2 insufficiency exacerbates diabetes and promotes β-cells dysfunction and inflammation in β-cells induced by a high-fat diet (HFD). In vitro, Kindlin-2 overexpression prevented high-glucose (HG)-induced dysfunction in β-cells. Kindlin-2 overexpression also decreased the expression of pro-inflammatory cytokines and NLRP3 inflammasome expression in β-cells exposed to HG. Furthermore, the loss of Kindlin-2 aggravates the expression of inflammatory cytokines and NLRP3 induced by HG in β-cells. Collectively, we demonstrate that Kindlin-2 protects against diabetes by inhibiting NLRP3 inflammasome activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.04.131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!