Photoaging, caused by exposure to sunlight and especially UVA, has been identified as one of the culprits for age-related skin deterioration. Here, we initially demonstrated that urolithin A (UroA), a metabolite derived from intestine microflora, possessed sufficient photoprotective capacity and attenuated UVA-induced senescent phenotypes in human fibroblasts, such as growth inhibition, senescence-associated β-galactosidase activity, breakdown of extracellular matrix, synthesis of senescence-associated secretory phenotypes and cell cycle arrest. Furthermore, UroA lessened the accumulation of intracellular reactive oxygen species, which promoted the phosphorylation and afterwards nuclear translocation of NRF2, subsequently driving the activation of downstream antioxidative enzymes. In parallel, we proved that UroA restored mitochondrial function by induction of mitophagy, which was regulated by the SIRT3-FOXO3-PINK1-PARKIN network. Taken together, our results showed that UroA protected dermal fibroblast from UVA damage through NRF2/ARE activation and mitophagy process, thus supporting UroA as a potential therapeutic agent for photoaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2022.112462DOI Listing

Publication Analysis

Top Keywords

activation mitophagy
8
uroa
5
urolithin protects
4
protects human
4
human dermal
4
dermal fibroblasts
4
fibroblasts uva-induced
4
uva-induced photoaging
4
photoaging nrf2
4
nrf2 activation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!