One-pot superhydrophilic surface modification of waste polyurethane foams for high-efficiency oil/water separation.

J Environ Manage

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu, 610065, China; Advanced Polymer Materials Research Center of Sichuan University, Shishi, 362700, China. Electronic address:

Published: August 2022

Despite of the fact that polymers have brought tremendous convenience to human life, they have also inevitably caused considerable environmental pollution after their service life. Therefore, a feasible strategy that can effectively recycle waste polymers and endow them with high added value is much desired. Superwetting materials have shown great promise in oily wastewater treatment because of their high oil/water separation efficiency. However, most of these materials present some limitations, such as complex preparation procedures and poor salt tolerance, which hamper their practical applications. In this study, an iron hydroxide@polydopamine@waste polyurethane foam (Fe(OH)@PDA@WPU) was synthesized via a facile and mild "one-pot" reaction. During this process, polymerization of dopamine and in situ growth of Fe(OH) were simultaneously realized, and the resultant PDA and Fe(OH) nanoparticles were firmly attached to the surface of WPU. Due to the abundant hydrophilic groups from PDA and Fe(OH) coupled with the surface roughness created by Fe(OH) nanoparticles, the surface properties of the foam could be changed from hydrophobic to superhydrophilic. Remarkably, the Fe(OH)@PDA@WPU was capable of separating various oil/water mixtures even under some severe conditions (e.g. erosion in a saturated sodium chloride solution and longtime sonication), demonstrating high potential in marine oily sewage treatment. Moreover, this work also paved a new path for reducing the negative impact of waste polymer foams on our environment, and in the meantime realizing their high value utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115140DOI Listing

Publication Analysis

Top Keywords

oil/water separation
8
pda feoh
8
feoh nanoparticles
8
one-pot superhydrophilic
4
surface
4
superhydrophilic surface
4
surface modification
4
modification waste
4
waste polyurethane
4
polyurethane foams
4

Similar Publications

Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).

View Article and Find Full Text PDF

The development of affordable ceramic membranes is essential for reducing expenses and optimizing the treatment of oily wastewater. There is an urgent demand for membranes that are not only affordable and easy to operate but also stable and capable of managing high fluxes to address the increasing volumes of oily wastewater. The significant production demands associated with many commercially available ceramic membranes, primarily due to the use of specialised raw materials and intricate processing methods, limiting their suitability for many wastewater treatment applications.

View Article and Find Full Text PDF

A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.

View Article and Find Full Text PDF

This study introduces a UiO-66-NH2/Tannic acid/Polyvinylidene fluoride (UTP) composite membrane for efficient oil-water separation. Pristine polyvinylidene fluoride (PVDF) membranes, due to their hydrophobic nature, tend to foul during oil-in-water emulsion separation. By incorporating the metal-organic framework (MOF) UiO-66-NH2 and stabilizing it with tannic acid (TA) and polyvinyl alcohol (PVA), the membrane's hydrophilicity and antifouling properties were significantly enhanced.

View Article and Find Full Text PDF

Hydrophobic materials have been fabricated by DLP vat photopolymerization of isobornyl acrylate-based resins with chemical modification and/or surface geometry engineering. Fluorinated and polydimethylsiloxane (PDMS)-based acrylic monomers are used for chemical modification and are incorporated into the printed materials. The water wettability was significantly reduced and plateaued with as low as 5% (w/w) of the auxillary hydrophobic monomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!