The complexity of modeling water quality variations in water distribution systems (WDS), studied for decades, stems from multiple constraints and variables involved and the complexity of the system behavior. The conventional macroscale-based WDS water quality models are founded on continuum mechanics. In attempts to provide a broad picture of the multi-species interactions, these models overlook the stochasticity corresponding to the reaction mechanisms within the WDS domain. Furthermore, owing to the black-box type modeling adopted in simulating the multi-species interactions, the existing state-of-the-art models have limitations in representing intermediates and/or by-products formation. Accordingly, they remain ineffective in describing the water chemistry-stoichiometric interactions within the WDS domain. Only a radically new modeling approach could overcome the limitations of the macroscale-based approaches and enables analyzing the stochastic WDS mechanisms by keeping the true nature of the system behavior. Stimulated by the metabolic network modeling principles in systems biology, this article outlines the prospect of developing an innovative 'water'bolic network modeling approach to provide a new outlook to the existing WDS water quality modeling research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118527DOI Listing

Publication Analysis

Top Keywords

water quality
12
systems biology
8
water distribution
8
distribution systems
8
system behavior
8
wds water
8
multi-species interactions
8
wds domain
8
modeling approach
8
network modeling
8

Similar Publications

Purpose: Postoperative thirst is common and distressing to patients, as is pain and nausea. The causes of postoperative thirst are complex and include factors like preoperative fasting, perioperative fluid loss, and certain anesthesia medications. Effective care for postoperative thirst has been shown in post-anesthesia care units (PACUs), but many Japanese hospitals lack PACUs or do not address thirst in their PACUs.

View Article and Find Full Text PDF

Seeking effective improvement agent control measures to enhance the photosynthetic physiological traits and yield levels of spring maize is crucial for efficient green agriculture in arid regions. Therefore, this study was conducted to clarify the effects of coupling improvement agents under magnetoelectric activated water irrigation conditions on the photosynthetic physiological traits, grain nutrients, and yield of spring maize in the arid region of northwest China. Field experiments were set up with three concentrations of growth regulators: 400 times (G1), 500 times (G2), and 600 times (G3), and three amounts of : 15 kg/ha (R1), 45 kg/ha (R2), and 75 kg/ha (R3), along with a control group CK, making a total of 10 treatments applied in the field experiment.

View Article and Find Full Text PDF

As a result of climate change, global temperatures are increasing, and water scarcity is on the rise. Soybean [ () Merr] is one of the most important crops in the world due to its importance as food and feed. One of the major limiting factors for soybean production is drought, which can cause up to 80% reduction in yield.

View Article and Find Full Text PDF

HO Triggering Electron-Directed Transfer of Emerging Contaminants over Asymmetric Nano Zinc Oxide Surfaces for Water Self-Purification Expansion.

JACS Au

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.

Slow mass transfer processes between inert emerging contaminants (ECs) and dissolved oxygen (DO) limit natural water self-purification; thus, excessive energy consumption is necessary to achieve ECs removal, which has become a longstanding global challenge. Here, we propose an innovative water self-purification expansion strategy by constructing asymmetric surfaces that could modulate trace HO as trigger rather than oxidant to bridge a channel between inert ECs and natural dissolved oxygen, achieved through a dual-reaction-center (DRC) catalyst consisting of Cu/Co lattice-substituted ZnO nanorods (CCZO-NRs). During water purification, the bond lengths of emerging contaminants (ECs) adsorbed on the asymmetric surface were stretched, and this stretching was further enhanced by HO mediation, resulting in a significant reduction of bond-breaking energy barriers.

View Article and Find Full Text PDF

Background: This video article describes the use of bone-anchored prostheses for patients with transtibial amputations, most often resulting from trauma, infection, or dysvascular disease. Large studies have shown that about half of all patients with a socket-suspended artificial limb experience limited mobility and limited prosthesis use because of socket-related problems. These problems occur at the socket-residual limb interface as a result of a painful and unstable connection, leading to an asymmetrical gait and subsequent pelvic and back pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!