Mammalian expression systems, particularly the human embryonic kidney (HEK-293) cells, combined with electrophysiological studies, have greatly benefited our understanding of the function, characteristic, and regulation of various ion channels. It was previously assumed that the existence of endogenous ion channels in native HEK-293 cells could be negligible. Still, more and more ion channels are gradually reported in native HEK-293 cells, which should draw our attention. In this regard, we summarize the different ion channels that are endogenously expressed in HEK-293 cells, including voltage-gated Na channels, Ca channels, K channels, Cl channels, nonselective cation channels, TRP channels, acid-sensitive ion channels, and Piezo channels, which may complicate the recording of the heterogeneously expressed ion channels to a certain degree. We noted that the expression patterns and channel profiles varied with different studies, which may be due to the distinct originality of the cells, cell culture conditions, passage numbers, and different recording protocols. Therefore, a better knowledge of endogenous ion channels may help minimize potential problems in characterizing heterologously expressed ion channels. Based on this, it is recommended that HEK-293 cells from unknown sources should be examined before transfection for the characterization of their functional profile, especially when the expression level of exogenous ion channels does not overwhelm the endogenous ion channels largely, or the current amplitude is not significantly higher than the native currents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-022-02700-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!