Objectives: Osteonecrosis of the femoral head (ONFH) is a devastating disease characterized by destructive bone structures, enlarged adipocyte accumulation and impaired vascularization. The aldehyde dehydrogenase 2 (ALDH 2) is the limiting enzyme for ethanol metabolism with many physiological functions. The aim was investigated the potential protective role of activated ALDH 2 by Alda-1 for ethanol-induced ONFH.
Materials And Methods: The ethanol-induced ONFH in rat was performed to explore the protective of Alda-1 by various experimental methods. Subsequently, the effect of Alda-1 and ethanol on the osteogenic and adipogenic differentiation was investigated via multiple cellular and molecular methods. Finally, the effect of Alda-1 and ethanol on the neo-vascularization was detected in Human umbilical vein endothelial cells (HUVECs) and ONFH model.
Results: Firstly, radiographical and pathological measurements indicated that alda-1 protected ethanol-induced ONFH. Moreover, ethanol significantly inhibited the proliferation and osteogenic differentiation of BMSCs, whereas Alda-1 could distinctly rescue it by PI3K/AKT signalling. Secondly, ethanol remarkably promoted the lipid vacuoles formation of BMSCs, while Alda-1 significantly retarded it on BMSCs by AMPK signalling pathway. Finally, ethanol significantly inhibited proliferation and growth factor level resulting in reduced angiogenesis, whereas Alda-1 could rescue the effect of ethanol. Additionally, Alda-1 significantly reduced the occurrence of ONFH and promoted vessel number and distribution in alcoholic ONFH.
Conclusions: Alda-1 activation of ALDH 2 was highly demonstrated to protect ethanol-induced ONFH by triggering new bone formation, reducing adipogenesis and stimulating vascularization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201375 | PMC |
http://dx.doi.org/10.1111/cpr.13252 | DOI Listing |
Cell Prolif
June 2022
Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China.
Objectives: Osteonecrosis of the femoral head (ONFH) is a devastating disease characterized by destructive bone structures, enlarged adipocyte accumulation and impaired vascularization. The aldehyde dehydrogenase 2 (ALDH 2) is the limiting enzyme for ethanol metabolism with many physiological functions. The aim was investigated the potential protective role of activated ALDH 2 by Alda-1 for ethanol-induced ONFH.
View Article and Find Full Text PDFJ Cell Mol Med
April 2020
Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
Characteristic pathological changes in osteonecrosis of the femoral head (ONFH) include reduced osteogenic differentiation of bone mesenchymal stem cells (BMSCs), impaired osseous circulation and increased intramedullary adipocytes deposition. Osthole is a bioactive derivative from coumarin with a wide range of pharmacotherapeutic effects. The aim of this study was to unveil the potential protective role of osthole in alcohol-induced ONFH.
View Article and Find Full Text PDFBiomed Pharmacother
December 2019
Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. Electronic address:
Osteonecrosis of the femoral head (ONFH) is usually caused by chronic and excessive alcohol dependency, and this condition largely suppresses the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). As a trimethyl derivative of glycine, betaine is an important human nutrient that regulates a series of vital biological processes, including oxidative stress, inflammatory responses, osteoblast differentiation and cellular apoptosis. However, no study has investigated the role of betaine in alcohol-induced ONFH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!