Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Planting rice in saline-alkali land can effectively improve saline-alkali soil and increase grain yield, but traditional identification methods for saline-alkali-tolerant rice varieties require tedious and time-consuming field investigations based on growth indicators by rice breeders. In this study, the Python machine deep learning method was used to analyze the Raman molecular spectroscopy of rice and assist in feature attribution, in order to study a fast and efficient identification method of saline-alkali-tolerant rice varieties. A total of 156 Raman spectra of four rice varieties (two saline-alkali-tolerant rice varieties and two saline-alkali-sensitive rice varieties) were analyzed, and the wave crests were extracted by an improved signal filtering difference method and the feature information of the wave crest was automatically extracted by scipy.signal.find_peaks. Select K Best (SKB), Recursive Feature Elimination (RFE) and Select F Model (SFM) were used to select useful molecular features. Based on these feature selection methods, a Logistic Regression Model (LRM) and Random Forests Model (RFM) were established for discriminant analysis. The experimental results showed that the RFM identification model based on the RFE method reached a higher recognition rate of 89.36%. According to the identification results of RFM and the identification of feature attribution materials, amylum was the most significant substance in the identification of saline-alkali-tolerant rice varieties. Therefore, an intelligent method for the identification of saline-alkali-tolerant rice varieties based on Raman molecular spectroscopy is proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101781 | PMC |
http://dx.doi.org/10.3390/plants11091210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!