The Biodiversity of Grapevine Bacterial Endophytes of Rupr.

Plants (Basel)

Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.

Published: April 2022

In this paper, the composition profiles of bacterial endophytes in wild-growing Amur grape Rupr. grown in the south of the Russian Far East were analyzed using both a cultivation-dependent (sowing bacteria) and a cultivation-independent (next generation sequencing, NGS) approach. Both methods revealed the prevalent endophytes in were represented by -40.3-75.8%, -8.6-18.7%, -9.2-15.4%, and -6.1-6.6%. NGS also showed a large proportion of (12.2%) and a small proportion of other classes (less than 5.7%). In general, NGS revealed a greater variety of classes and genera in the endophytic bacterial community due to a high number of reads (574,207) in comparison with the number of colonies (933) obtained after the cultivation-dependent method. A comparative analysis performed in this study showed that both wild grape from Russia and domesticated cultivars of from Germany and California (USA) exhibit the same basic composition of endophytic bacteria, while the percentages of major taxa and minor taxa showed some differences depending on the plant organ, grape individuals, environmental conditions, and sampling time. Furthermore, the obtained data revealed that lower temperatures and increased precipitation favored the number and diversity of endophytic bacteria in the wild Amur grape. Thus, this study firstly described and analyzed the biodiversity of endophytic bacteria in wild grapevine .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099740PMC
http://dx.doi.org/10.3390/plants11091128DOI Listing

Publication Analysis

Top Keywords

endophytic bacteria
12
bacterial endophytes
8
amur grape
8
bacteria wild
8
biodiversity grapevine
4
grapevine bacterial
4
endophytes rupr
4
rupr paper
4
paper composition
4
composition profiles
4

Similar Publications

Endophytes isolated from seaweeds emerge as promising biocontrol agents against broad spectrum of plant diseases. The endophytic bacteria were isolated from the seaweed (Sargassum wightii) to manage the chilli fruit rot pathogen Fusarium incarnatum. The antifungal activity of the isolated bacteria was tested by dual culture assay and plant growth-promoting activity was also tested by the standard paper towel method.

View Article and Find Full Text PDF

Introduction: Grapevine ( L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose () (Penz.

View Article and Find Full Text PDF

Bacterial synergies amplify nitrogenase activity in diverse systems.

ISME Commun

January 2024

School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, United States.

Endophytes are microbes living within plant tissue, with some having the capacity to fix atmospheric nitrogen in both a free-living state and within their plant host. They are part of a diverse microbial community whose interactions sometimes result in a more productive symbiosis with the host plant. Here, we report the co-isolation of diazotrophic endophytes with synergistic partners sourced from two separate nutrient-limited sites.

View Article and Find Full Text PDF

Introduction Oral verrucous carcinoma (OVC), a low-grade variation of oral squamous cell carcinoma (OSCC), is distinguished by endophytic development and a pebbly, mammillated surface. OVC, often referred to as Ackerman's tumor, has been known to involve lymph nodes but rarely spreads to regional and distant locations; when the primary tumor grows, it frequently involves surrounding tissues. Histopathologically, it has a thicker basement membrane, many reduplications, and a large area of inflammatory infiltration that resembles OSCC.

View Article and Find Full Text PDF

Zea mays L. (Maize) is one of the most crucial world's crops, for their nutritional values, however, the water scarcity and consequent soil salinization are the major challenges that limit the growth and productivity of this plant, particularly in the semi-arid regions in Egypt. Recently, biopriming has been recognized as one of the most efficient natural-ecofriendly approaches to mitigate the abiotic salt stress on plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!