Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Translocation of cell-penetrating peptides is promoted by incorporated arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. A series of cationic linear-, star- and multi-branched-poly(L-arginine-co-L-phenylalanine) have been synthesized via the ring-opening copolymerizations of corresponding N-carboxyanhydride monomers followed by further modifications using the N-heterocyclic carbene organocatalyst. All the polymers are characterized by the random coiled microstructure. Antibacterial efficacy, tested by the gram-positive B. subtilis bacteria and the gram-negative E. coli bacteria, was sensitive to the structure and relative composition of the copolymer and increased in the order of linear- < star- < multi-branched structure. The multi-branched-p[(L-arginine)23-co-(L-phenylalanine)7]8 polymer showed the best antibacterial property with the lowest minimum inhibitory concentration values of 48 μg mL−1 for E. coli and 32 μg mL−1 for B. subtilis. The efficacy was prominent for B. subtilis due to the anionic nature of its membrane. All of the resultant arginine moiety-containing polypeptides showed excellent blood compatibility. The antibiotic effect of the copolymers with arginine moieties was retained even in the environment bearing Ca2+, Mg2+, and Na+ ions similar to blood plasma. The cationic arginine-bearing copolypeptides were also effective for the sterilization of naturally occurring sources of water such as lakes, seas, rain, and sewage, showing a promising range of applicability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9104764 | PMC |
http://dx.doi.org/10.3390/polym14091868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!