Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The fatigue properties of composite materials are degraded seriously in hygrothermal environments, so taking into account their influence is very important when evaluating the fatigue life of composite structures. Tensile fatigue experiments of carbon fiber reinforced resin composite cross-ply laminates were conducted in room temperature/dry (RTD), cool temperature/dry (CTD) and elevated temperature/wet (ETW) conditions. The S-N curves and fatigue failure modes of the cross-ply laminates were obtained in three conditions. On this basis, a finite element model was established to discuss the influence of temperature and moisture content on the fatigue properties, as well as a method for determining environmental factors of fatigue life of cross-ply laminates was established. The results show that the saturation moisture absorption and temperature have a significant influence on the tensile fatigue properties of cross-ply laminates. The high-cycle fatigue property is weakened significantly by the saturation moisture absorption and high temperature, but the low-cycle fatigue properties were strengthened in cool temperature conditions. The delamination failure mode in ETW is the most severe, presenting with an obvious necking phenomenon. The influence of temperature has a greater effect than that of moisture content, but moisture absorption would play its affect obviously when temperature exceeds 40 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9099677 | PMC |
http://dx.doi.org/10.3390/polym14091857 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!