Multilayer Packaging in a Circular Economy.

Polymers (Basel)

Institut für Industrial Ecology, Hochschule Pforzheim, Tiefenbronner Straße 65, 75175 Pforzheim, Germany.

Published: April 2022

Sorting multilayer packaging is still a major challenge in the recycling of post-consumer plastic waste. In a 2019 Germany-wide field study with 248 participants, lightweight packaging (LWP) was randomly selected and analyzed by infrared spectrometry to identify multilayer packaging in the LWP stream. Further investigations of the multilayer packaging using infrared spectrometry and microscopy were able to determine specific multilayer characteristics such as typical layer numbers, average layer thicknesses, the polymers of the outer and inner layers, and typical multilayer structures for specific packaged goods. This dataset shows that multilayer packaging is mainly selected according to the task to be fulfilled, with practically no concern for its end-of-life recycling properties. The speed of innovation in recycling processes does not keep up with packaging material innovations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9103501PMC
http://dx.doi.org/10.3390/polym14091825DOI Listing

Publication Analysis

Top Keywords

multilayer packaging
20
packaging lwp
8
infrared spectrometry
8
multilayer
7
packaging
6
packaging circular
4
circular economy
4
economy sorting
4
sorting multilayer
4
packaging major
4

Similar Publications

In this work, we propose a new method for ordering nets during the process of layer assignment in global routing problems. The global routing problems that we focus on in this work are based on routing problems that occur in the design of substrates in multilayered semiconductor packages. The proposed new method is based on machine learning techniques and we show that the proposed method supersedes conventional net ordering techniques based on heuristic score functions.

View Article and Find Full Text PDF

The simple oxides like titania, zirconia, and ZnO are famous with their antibacterial (or even antimicrobial) properties as well as their biocompatibility. They are broadly used for air and water filtering, in food packaging, in medicine (for implants, prostheses, and scaffolds), etc. However, these application fields can be broadened by switching to the composite multicomponent compounds (for example, titanates) containing in their unit cell, together with oxygen, several different metallic ions.

View Article and Find Full Text PDF

Pioneering high barrier packaging for pressure assisted thermal sterilization of low-acid food products.

Food Res Int

November 2024

Department of Biological Systems Engineering, Washington State University, P.O. Box-646120, WA 99164-6120, USA. Electronic address:

Pressure-assisted thermal sterilization (PATS) utilizes flexible packaging with low oxygen and water vapor transmission rates (OTRs, WVTRs). In this study, pouches made from metal oxide (MO)-coated (A-D) and ethylene vinyl alcohol (EVOH)-containing (E, F) multilayer films were filled with water and mashed potatoes (MP), preheated at 98 ± 0.5 °C for 10 min, and processed using a pilot-scale high-pressure processing machine (HPP) at 600 ± 5 MPa for 300 s.

View Article and Find Full Text PDF

A bioactive multilayer film (ML) loaded with l-Ascorbic acid (AA) was developed using chitosan (CH), sodium alginate (SA), and ethyl cellulose (EC). Various properties of the films, including morphological, hydrophobic, barrier, mechanical, optical, and antioxidant characteristics, were evaluated and compared to those of monolayer films made from each biopolymer. The cross-sectional analysis via scanning electron microscopy revealed the successful preparation of the ML film with layering of the different biopolymers.

View Article and Find Full Text PDF

The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. This article provides a comprehensive review of the latest developments of PLA- and PHA-biopolyester-based electrospun materials for food packaging applications, summarizing the reported technologies, material properties, applications, and invention patents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!